Search results
Results from the WOW.Com Content Network
There is an approach to intersection number, introduced by Snapper in 1959-60 and developed later by Cartier and Kleiman, that defines an intersection number as an Euler characteristic. Let X be a scheme over a scheme S , Pic( X ) the Picard group of X and G the Grothendieck group of the category of coherent sheaves on X whose support is proper ...
As well as being called the intersection number, the minimum number of these cliques has been called the R-content, [7] edge clique cover number, [4] or clique cover number. [8] The problem of computing the intersection number has been called the intersection number problem , [ 9 ] the intersection graph basis problem , [ 10 ] covering by ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Union [e] If R and S are relations over X then R ∪ S = { (x, y) | xRy or xSy} is the union relation of R and S. The identity element of this operation is the empty relation. For example, ≤ is the union of < and =, and ≥ is the union of > and =. Intersection [e] If R and S are relations over X then R ∩ S = { (x, y) | xRy and xSy} is the ...
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other. A nullary union refers to a union of zero ( ) sets and it is by definition equal to the empty set.
So the intersection of the empty family should be the universal set (the identity element for the operation of intersection), [4] but in standard set theory, the universal set does not exist. However, when restricted to the context of subsets of a given fixed set X {\displaystyle X} , the notion of the intersection of an empty collection of ...
A t-(v,k,λ) design D is quasi-symmetric with intersection numbers x and y (x < y) if every two distinct blocks intersect in either x or y points. These designs naturally arise in the investigation of the duals of designs with λ = 1. A non-symmetric (b > v) 2-(v,k,1) design is quasisymmetric with x = 0 and y = 1.
There are n line bundles L i on M g,n, whose fiber at a point of the moduli stack is given by the cotangent space of a Riemann surface at the marked point x i. The intersection index 〈τ d 1 , ..., τ d n 〉 is the intersection index of Π c 1 ( L i ) d i on M g , n where Σ d i = dim M g , n = 3 g – 3 + n , and 0 if no such g exists ...