Search results
Results from the WOW.Com Content Network
Table of specific heat capacities at 25 °C (298 K) unless otherwise noted. [citation needed] Notable minima and maxima are shown in maroon. Substance Phase Isobaric mass heat capacity c P J⋅g −1 ⋅K −1 Molar heat capacity, C P,m and C V,m J⋅mol −1 ⋅K −1 Isobaric volumetric heat capacity C P,v J⋅cm −3 ⋅K −1 Isochoric ...
The kilopound per square inch (ksi) is a scaled unit derived from psi, equivalent to a thousand psi (1000 lbf/in 2). ksi are not widely used for gas pressures. They are mostly used in materials science, where the tensile strength of a material is measured as a large number of psi. [4] The conversion in SI units is 1 ksi = 6.895 MPa, or 1 MPa ...
The alttype field allows conversion between units of different type, provided each unit is whitelisted to allow the conversion. As at December 2013, the following energy units have alttype = "torque" (the first line consists of different units, while the second line consists of aliases for units in the first line):
foot-pound-force per hour: ft⋅lbf/h ≡ 1 ft lbf/h ≈ 3.766 161 × 10 −4 W: foot-pound-force per minute: ft⋅lbf/min ≡ 1 ft lbf/min = 2.259 696 580 552 334 × 10 −2 W: foot-pound-force per second: ft⋅lbf/s ≡ 1 ft lbf/s = 1.355 817 948 331 4004 W: horsepower (boiler) hp ≈ 34.5 lb/h × 970.3 BTU IT /lb ≈ 9 809.5 W [35 ...
Substituting from the ideal gas equation gives finally: = where n = number of moles of gas in the thermodynamic system under consideration and R = universal gas constant. On a per mole basis, the expression for difference in molar heat capacities becomes simply R for ideal gases as follows:
The heat that is added to the gas goes only partly into heating the gas, while the rest is transformed into the mechanical work performed by the piston. In the first, constant-volume case (locked piston), there is no external motion, and thus no mechanical work is done on the atmosphere; C V is used.
All values refer to 25 °C and to the thermodynamically stable standard state at that temperature unless noted. Values from CRC refer to "100 kPa (1 bar or 0.987 standard atmospheres)".
To achieve the same increase in temperature, more heat energy is needed for a gram of that substance than for a gram of a monatomic gas. Thus, the specific heat capacity per mole of a polyatomic gas depends both on the molecular mass and the number of degrees of freedom of the molecules. [25] [26] [27]