Search results
Results from the WOW.Com Content Network
In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.
For example 111111111111111 (15 digits) is divisible by 111 and 11111 in that base. If a number m can be expressed as a string of prime length to some base, such a number may or may not be prime, but commonly is not; for example, to base 10, there are only three such numbers of length less than 100 (1 is by definition, not prime). The three are:
The JScience library has a Complex number class. The JAS library allows the use of complex numbers. Netlib has a complex number class for Java. javafastcomplex also adds complex number support for Java; jcomplexnumber is a project on implementation of complex number in Java. JLinAlg includes complex numbers with arbitrary precision.
A number that is non-palindromic in all bases b in the range 2 ≤ b ≤ n − 2 can be called a strictly non-palindromic number. For example, the number 6 is written as "110" in base 2, "20" in base 3, and "12" in base 4, none of which are palindromes. All strictly non-palindromic numbers larger than 6 are prime.
Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory. Mersenne primes, named after the friar Marin Mersenne, are prime numbers that can be expressed as 2 p − 1 for some positive integer p. For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1.
For example: automobile car This template should not be used to tag redirects that are taxonomic synonyms . For taxonomic synonyms use {{ R from alternative scientific name }} instead .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A number that is not part of any friendly pair is called solitary. The abundancy index of n is the rational number σ(n) / n, in which σ denotes the sum of divisors function. A number n is a friendly number if there exists m ≠ n such that σ(m) / m = σ(n) / n. Abundancy is not the same as abundance, which is defined as σ(n) − 2n.