Search results
Results from the WOW.Com Content Network
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. The term Archimedean spiral is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to Archimedes' spiral (the specific arithmetic spiral of ...
Conical spiral with an archimedean spiral as floor projection Floor projection: Fermat's spiral Floor projection: logarithmic spiral Floor projection: hyperbolic spiral. In mathematics, a conical spiral, also known as a conical helix, [1] is a space curve on a right circular cone, whose floor projection is a plane spiral.
A logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature. The first to describe a logarithmic spiral was Albrecht Dürer (1525) who called it an "eternal line" ("ewige Linie").
The representation of the Fermat spiral in polar coordinates (r, φ) is given by the equation = for φ ≥ 0. The parameter is a scaling factor affecting the size of the spiral but not its shape. The two choices of sign give the two branches of the spiral, which meet smoothly at the origin.
A double-end Euler spiral. The curve continues to converge to the points marked, as t tends to positive or negative infinity. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius). This curve is also referred to as a clothoid or Cornu spiral.
For <, spiral-ring pattern; =, regular spiral; >, loose spiral. R is the distance of spiral starting point (0, R) to the center. R is the distance of spiral starting point (0, R) to the center. The calculated x and y have to be rotated backward by ( − θ {\displaystyle -\theta } ) for plotting.
The formula for a logarithmic spiral = is = ()) . Arc length The length of an arc of a curve with polar equation r = r ( φ ) {\displaystyle r=r(\varphi )} is
The length of the side of a larger square to the next smaller square is in the golden ratio. For a square with side length 1, the next smaller square is 1/φ wide. The next width is 1/φ², then 1/φ³, and so on. There are several comparable spirals that approximate, but do not exactly equal, a golden spiral. [2]