enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Commandino's theorem - Wikipedia

    en.wikipedia.org/wiki/Commandino's_theorem

    Commandino's theorem, named after Federico Commandino (1509–1575), states that the four medians of a tetrahedron are concurrent at a point S, which divides them in a 3:1 ratio. In a tetrahedron a median is a line segment that connects a vertex with the centroid of the opposite face – that is, the centroid of the opposite triangle.

  3. Median (geometry) - Wikipedia

    en.wikipedia.org/wiki/Median_(geometry)

    There are four medians, and they are all concurrent at the centroid of the tetrahedron. [10] As in the two-dimensional case, the centroid of the tetrahedron is the center of mass. However contrary to the two-dimensional case the centroid divides the medians not in a 2:1 ratio but in a 3:1 ratio (Commandino's theorem).

  4. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    Concurrent lines arise in the dual of Pappus's hexagon theorem. For each side of a cyclic hexagon, extend the adjacent sides to their intersection, forming a triangle exterior to the given side. Then the segments connecting the circumcenters of opposite triangles are concurrent.

  5. Bisection - Wikipedia

    en.wikipedia.org/wiki/Bisection

    These six lines are concurrent three at a time: in addition to the three medians being concurrent, any one median is concurrent with two of the side-parallel area bisectors. The envelope of the infinitude of area bisectors is a deltoid (broadly defined as a figure with three vertices connected by curves that are concave to the exterior of the ...

  6. Fermat point - Wikipedia

    en.wikipedia.org/wiki/Fermat_point

    Fig 1. Construction of the first isogonic center, X(13). When no angle of the triangle exceeds 120°, this point is the Fermat point. In Euclidean geometry, the Fermat point of a triangle, also called the Torricelli point or Fermat–Torricelli point, is a point such that the sum of the three distances from each of the three vertices of the triangle to the point is the smallest possible [1] or ...

  7. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    Given a set of collinear points, by plane duality we obtain a set of lines all of which meet at a common point. The property that this set of lines has (meeting at a common point) is called concurrency, and the lines are said to be concurrent lines. Thus, concurrency is the plane dual notion to collinearity.

  8. Euler line - Wikipedia

    en.wikipedia.org/wiki/Euler_line

    In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.

  9. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    Ceva's theorem, case 1: the three lines are concurrent at a point O inside ABC Ceva's theorem, case 2: the three lines are concurrent at a point O outside ABC. In Euclidean geometry, Ceva's theorem is a theorem about triangles.