Search results
Results from the WOW.Com Content Network
The triangle medians and the centroid. In geometry , a median of a triangle is a line segment joining a vertex to the midpoint of the opposite side, thus bisecting that side. Every triangle has exactly three medians, one from each vertex, and they all intersect at the triangle's centroid .
In the diagram, the medians (in black) intersect at the centroid G. Because the symmedians (in red) are isogonal to the medians, the symmedians also intersect at a single point, L . This point is called the triangle's symmedian point , or alternatively the Lemoine point or Grebe point .
The centroid of a triangle is the point of intersection of its medians (the lines joining each vertex with the midpoint of the opposite side). [6] The centroid divides each of the medians in the ratio 2 : 1 , {\displaystyle 2:1,} which is to say it is located 1 3 {\displaystyle {\tfrac {1}{3}}} of the distance from each side to the opposite ...
Lines A, B and C are concurrent in Y. In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point.. The set of all lines through a point is called a pencil, and their common intersection is called the vertex of the pencil.
In geometry, the Lemoine point, Grebe point or symmedian point is the intersection of the three symmedians (medians reflected at the associated angle bisectors) of a triangle. Ross Honsberger called its existence "one of the crown jewels of modern geometry". [1] In the Encyclopedia of Triangle Centers the symmedian point appears as the sixth ...
The orthocenter (intersection of the altitudes) of the medial triangle coincides with the circumcenter (center of the circle through the vertices) of the original triangle. Every triangle has an inscribed ellipse, called its Steiner inellipse, that is internally tangent to the triangle at the midpoints of all its sides. This ellipse is centered ...
In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types ...
For the 1-dimensional case, the geometric median coincides with the median.This is because the univariate median also minimizes the sum of distances from the points. (More precisely, if the points are p 1, ..., p n, in that order, the geometric median is the middle point (+) / if n is odd, but is not uniquely determined if n is even, when it can be any point in the line segment between the two ...