enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Predictive analytics - Wikipedia

    en.wikipedia.org/wiki/Predictive_analytics

    Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.

  3. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  4. Predictive modelling - Wikipedia

    en.wikipedia.org/wiki/Predictive_modelling

    Predictive modelling is often contrasted with causal modelling/analysis. In the former, one may be entirely satisfied to make use of indicators of, or proxies for, the outcome of interest. In the former, one may be entirely satisfied to make use of indicators of, or proxies for, the outcome of interest.

  5. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    An example of data mining related to an integrated-circuit (IC) production line is described in the paper "Mining IC Test Data to Optimize VLSI Testing." [12] In this paper, the application of data mining and decision analysis to the problem of die-level functional testing is described. Experiments mentioned demonstrate the ability to apply a ...

  6. Statistical learning theory - Wikipedia

    en.wikipedia.org/wiki/Statistical_learning_theory

    Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. [1] [2] [3] Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data.

  7. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    ML involves the study and construction of algorithms that can learn from and make predictions on data. [3] These algorithms operate by building a model from a training set of example observations to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.

  8. Data Science and Predictive Analytics - Wikipedia

    en.wikipedia.org/wiki/Data_Science_and...

    The significantly reorganized revised edition of the book (2023) [2] expands and modernizes the presented mathematical principles, computational methods, data science techniques, model-based machine learning and model-free artificial intelligence algorithms. The 14 chapters of the new edition start with an introduction and progressively build ...

  9. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  1. Related searches predictive tasks in data mining and analysis fundamental concepts and algorithms

    data mining algorithmsdata mining data set
    data mining wikipediaspatial data mining
    data mining patterns