enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    To determine an output directly in the time domain requires the convolution of the input with the impulse response. When the transfer function and the Laplace transform of the input are known, this convolution may be more complicated than the alternative of multiplying two functions in the frequency domain.

  3. Group delay and phase delay - Wikipedia

    en.wikipedia.org/wiki/Group_delay_and_phase_delay

    The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.

  4. Transmission line loudspeaker - Wikipedia

    en.wikipedia.org/wiki/Transmission_line_loudspeaker

    "I believe that speakers should preserve the integrity of the signal waveform and the Audio Perfectionist Journal has presented a great deal of information about the importance of time domain performance in loudspeakers. I’m not the only one who appreciates time- and phase-accurate speakers but I have been virtually the only advocate to speak ...

  5. Loudspeaker time alignment - Wikipedia

    en.wikipedia.org/wiki/Loudspeaker_time_alignment

    Loudspeaker time-alignment, usually simply referred to as "time-alignment" or "Time-Align", is a term applied in loudspeaker systems which use multiple drivers (like woofer, mid-range and tweeter) to cover a wide audio range. It involves delaying the sound emanating from one or more drivers (greater than 2-way) to correct the transient response ...

  6. Time constant - Wikipedia

    en.wikipedia.org/wiki/Time_constant

    In physics and engineering, the time constant, usually denoted by the Greek letter τ (tau), is the parameter characterizing the response to a step input of a first-order, linear time-invariant (LTI) system. [1] [note 1] The time constant is the main characteristic unit of a first-order LTI system. It gives speed of the response.

  7. Frequency response - Wikipedia

    en.wikipedia.org/wiki/Frequency_response

    Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...

  8. Time-domain harmonic scaling - Wikipedia

    en.wikipedia.org/wiki/Time-domain_harmonic_scaling

    Time-domain harmonic scaling (TDHS) is a method for time-scale modification of speech (or other audio signals), [1] allowing the apparent rate of speech articulation to be changed without affecting the pitch-contour and the time-evolution of the formant structure. [2]

  9. Spectral band replication - Wikipedia

    en.wikipedia.org/wiki/Spectral_band_replication

    Decoding of SBR requires transposing harmonics, a case of audio time stretching and pitch scaling. [10] A traditional approach starts with small intervals of discrete fourier transform (DFT), phase adjustments, IDFT, and ends with overlap-add. This method is sensitive to transient signals which can cause echos, requiring some padding (50% in ...