enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Apriori algorithm - Wikipedia

    en.wikipedia.org/wiki/Apriori_algorithm

    Apriori [1] is an algorithm for frequent item set mining and association rule learning over relational databases. It proceeds by identifying the frequent individual items in the database and extending them to larger and larger item sets as long as those item sets appear sufficiently often in the database.

  3. Association rule learning - Wikipedia

    en.wikipedia.org/wiki/Association_rule_learning

    The name of the algorithm is Apriori because it uses prior knowledge of frequent itemset properties. The control flow diagram for the Apriori algorithm. Overview: Apriori uses a "bottom up" approach, where frequent subsets are extended one item at a time (a step known as candidate generation), and groups of candidates are tested against the ...

  4. Frequent pattern discovery - Wikipedia

    en.wikipedia.org/wiki/Frequent_pattern_discovery

    For the most part, FP discovery can be done using association rule learning with particular algorithms Eclat, FP-growth and the Apriori algorithm. Other strategies include: Frequent subtree mining; Structure mining; Sequential pattern mining; and respective specific techniques.

  5. Affinity analysis - Wikipedia

    en.wikipedia.org/wiki/Affinity_analysis

    There are two important metrics for performing the association rules mining technique: support and confidence. Also, a priori algorithm is used to reduce the search space for the problem. [1] The support metric in the association rule learning algorithm is defined as the frequency of the antecedent or consequent appearing together in a data set ...

  6. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.

  7. Rule-based machine learning - Wikipedia

    en.wikipedia.org/wiki/Rule-based_machine_learning

    Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. [ 1 ] [ 2 ] [ 3 ] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that ...

  8. Sequential pattern mining - Wikipedia

    en.wikipedia.org/wiki/Sequential_Pattern_Mining

    For example, by analysing transactions of customer shopping baskets in a supermarket, one can produce a rule which reads "if a customer buys onions and potatoes together, he or she is likely to also buy hamburger meat in the same transaction". A survey and taxonomy of the key algorithms for item set mining is presented by Han et al. (2007). [5]

  9. GSP algorithm - Wikipedia

    en.wikipedia.org/wiki/GSP_Algorithm

    The candidate generation in a usual Apriori style would give (A, B, C) as a 3-itemset, but in the present context we get the following 3-sequences as a result of joining the above 2- sequences A → B → C, A → C → B and A → BC. The candidate–generation phase takes this into account.