Search results
Results from the WOW.Com Content Network
For instance, take X= S 2 × RP 3 and Y= RP 2 × S 3. Then X and Y have the same fundamental group, namely the cyclic group Z/2, and the same universal cover, namely S 2 × S 3; thus, they have isomorphic homotopy groups. On the other hand their homology groups are different (as can be seen from the Künneth formula); thus, X and Y are not ...
Fundamental groups and homology and cohomology groups are not only invariants of the underlying topological space, in the sense that two topological spaces which are homeomorphic have the same associated groups, but their associated morphisms also correspond—a continuous mapping of spaces induces a group homomorphism on the associated groups ...
CW complexes satisfy the Whitehead theorem: a map between CW complexes is a homotopy equivalence if and only if it induces an isomorphism on all homotopy groups. A covering space of a CW complex is also a CW complex. [13] The product of two CW complexes can be made into a CW complex.
Found in deer in northern Colorado and southern Wyoming in the 1990s, chronic wasting disease (CWD) has been recorded in free-ranging deer, elk and moose in at least 32 states across all parts of ...
In mathematics, Spanier–Whitehead duality is a duality theory in homotopy theory, based on a geometrical idea that a topological space X may be considered as dual to its complement in the n-sphere, where n is large enough. Its origins lie in Alexander duality theory, in homology theory, concerning complements in manifolds.
A Mississippi harvested a trophy, 180-class buck that had eluded other hunters in the area for years.
In homological algebra, Whitehead's lemmas (named after J. H. C. Whitehead) represent a series of statements regarding representation theory of finite-dimensional, semisimple Lie algebras in characteristic zero. Historically, they are regarded as leading to the discovery of Lie algebra cohomology. [1]
In fact, Rokhlin's theorem implies that a smooth compact spin 4-manifold has signature a multiple of 16. Michael Freedman used the intersection form to classify simply-connected topological 4-manifolds. Given any unimodular symmetric bilinear form over the integers, Q, there is a simply-connected closed 4-manifold M with intersection form Q.