Search results
Results from the WOW.Com Content Network
This experiment has become a classic example of the methodology introduced during the scientific revolution. The results of the experiment dramatically transformed the field of metaphysics, leading to John Locke's primary vs secondary quality distinction. [citation needed] Newton discussed prism dispersion in great detail in his book Opticks. [6]
Dispersion is a process by which (in the case of solid dispersing in a liquid) agglomerated particles are separated from each other, and a new interface between the inner surface of the liquid dispersion medium and the surface of the dispersed particles is generated. This process is facilitated by molecular diffusion and convection. [4]
Dispersion is the phenomenon in which the phase velocity of a wave depends on its frequency. [1] Sometimes the term chromatic dispersion is used to refer to optics specifically, as opposed to wave propagation in general. A medium having this common property may be termed a dispersive medium.
A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency
Dispersion (geology), a process whereby sodic soil disperses when exposed to water; Dispersion (materials science), the fraction of atoms of a material exposed to the surface; Dispersion polymerization, a polymerization process; Velocity dispersion, the statistical variation of velocities about the mean velocity for a group of astronomical objects
In physics, the phase problem is the problem of loss of information concerning the phase that can occur when making a physical measurement. The name comes from the field of X-ray crystallography , where the phase problem has to be solved for the determination of a structure from diffraction data. [ 1 ]
The linear dispersion relation – unaffected by wave amplitude – is for nonlinear waves also correct at the second order of the perturbation theory expansion, with the orders in terms of the wave steepness k a (where a is wave amplitude). To the third order, and for deep water, the dispersion relation is [19]
Dispersion can be differentiated from diffusion in that it is caused by non-ideal flow patterns [1] (i.e. deviations from plug flow) and is a macroscopic phenomenon, whereas diffusion is caused by random molecular motions (i.e. Brownian motion) and is a microscopic phenomenon.