Search results
Results from the WOW.Com Content Network
One voltage cycle of a three-phase system. A polyphase system (the term coined by Silvanus Thompson) is a means of distributing alternating-current (AC) electrical power that utilizes more than one AC phase, which refers to the phase offset value (in degrees) between AC in multiple conducting wires; phases may also refer to the corresponding terminals and conductors, as in color codes.
For example, a transformer with a vector group of Dy1 has a delta-connected HV winding and a wye-connected LV winding. The phase angle of the LV winding lags the HV by 30 degrees. Note that the high-voltage (HV) side always comes before the low-voltage (LV) side, regardless of which is the primary winding.
The polyelectrolyte theory of the gene reasons that DNA can maintain its shape regardless of mutations because the negative charges on the phosphate backbone dominate the physical interactions of the molecule to such a degree that changes in the nucleic acid sequence, the encoded information, do not affect the overall physical behavior of the ...
Such arrays will evenly balance the polyphase load between the phases of the source system. For example, balanced two-phase power can be obtained from a three-phase network by using two specially constructed transformers, with taps at 50% and 86.6% of the primary voltage.
A special purpose polyphase transformer is the zigzag transformer. There are many possible configurations that may involve more or fewer than six windings and various tap connections. Three-phase transformers 380 kV/110 kV and 110 kV/20 kV
The second transformer is connected to a center-tap of the first transformer, and is wound for 86.6% of the phase-to-phase voltage on the three-phase system. The secondaries of the transformers will have two phases 90 degrees apart in time, and a balanced two-phase load will be evenly balanced over the three supply phases.
A typical one-line diagram with annotated power flows. Red boxes represent circuit breakers, grey lines represent three-phase bus and interconnecting conductors, the orange circle represents an electric generator, the green spiral is an inductor, and the three overlapping blue circles represent a double-wound transformer with a tertiary winding.
Set of three unbalanced phasors, and the necessary symmetrical components that sum up to the resulting plot at the bottom. In 1918 Charles Legeyt Fortescue presented a paper [4] which demonstrated that any set of N unbalanced phasors (that is, any such polyphase signal) could be expressed as the sum of N symmetrical sets of balanced phasors, for values of N that are prime.