enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    To incorporate the effect of adhesion in Hertzian contact, Johnson, Kendall, and Roberts [5] formulated the JKR theory of adhesive contact using a balance between the stored elastic energy and the loss in surface energy. The JKR model considers the effect of contact pressure and adhesion only inside the area of contact.

  3. Chemical force microscopy - Wikipedia

    en.wikipedia.org/wiki/Chemical_force_microscopy

    Due to the increased contact area, the tip and the surface act as anchors holding protein bundles while they separate. As uncoiling ensues, the force required jumps, indicating various stages of uncoiling: (1) separation into bundles, (2) bundle separation into domains of crystalline protein held together by van der Waals forces, and (3 ...

  4. Thermal contact conductance - Wikipedia

    en.wikipedia.org/wiki/Thermal_contact_conductance

    Since the contact pressure is the most important factor, most studies, correlations and mathematical models for measurement of contact conductance are done as a function of this factor. The thermal contact resistance of certain sandwich kinds of materials that are manufactured by rolling under high temperatures may sometimes be ignored because ...

  5. Frictional contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Frictional_contact_mechanics

    Finally there are the processes at the contact interface: compression and adhesion in the direction perpendicular to the interface, and friction and micro-slip in the tangential directions. The last aspect is the primary concern of contact mechanics. It is described in terms of so-called contact conditions. For the direction perpendicular to ...

  6. Bearing pressure - Wikipedia

    en.wikipedia.org/wiki/Bearing_pressure

    Bearing pressure is a particular case of contact mechanics often occurring in cases where a convex surface (male cylinder or sphere) contacts a concave surface (female cylinder or sphere: bore or hemispherical cup). Excessive contact pressure can lead to a typical bearing failure such as a plastic deformation similar to peening.

  7. Flow coefficient - Wikipedia

    en.wikipedia.org/wiki/Flow_coefficient

    The flow coefficient of a device is a relative measure of its efficiency at allowing fluid flow. It describes the relationship between the pressure drop across an orifice valve or other assembly and the corresponding flow rate. Mathematically the flow coefficient C v (or flow-capacity rating of valve) can be expressed as

  8. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    [4] [5] [6] A generalized model of the flow distribution in channel networks of planar fuel cells. [6] Similar to Ohm's law, the pressure drop is assumed to be proportional to the flow rates. The relationship of pressure drop, flow rate and flow resistance is described as Q 2 = ∆P/R. f = 64/Re for laminar flow where Re is the Reynolds number.

  9. Contact geometry - Wikipedia

    en.wikipedia.org/wiki/Contact_geometry

    Given an n-dimensional smooth manifold M, and a point p ∈ M, a contact element of M with contact point p is an (n − 1)-dimensional linear subspace of the tangent space to M at p. [ 2 ] [ 3 ] A contact element can be given by the kernel of a linear function on the tangent space to M at p .