Search results
Results from the WOW.Com Content Network
The midsegment of a trapezoid is one of the two bimedians (the other bimedian divides the trapezoid into equal areas). The height (or altitude) is the perpendicular distance between the bases. In the case that the two bases have different lengths (a ≠ b), the height of a trapezoid h can be determined by the length of its four sides using the ...
The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)
The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes; The volume of a sphere is 4 times that of a cone having a base of the same radius and height equal to this radius; The volume of a cylinder having a height equal to its diameter is 3/2 that of a sphere having the same diameter;
This translates to a hoppus foot being equal to 1.273 cubic feet (2,200 in 3; 0.0360 m 3). The hoppus board foot, when milled, yields about one board foot. The volume yielded by the quarter-girth formula is 78.54% of cubic measure (i.e. 1 ft 3 = 0.7854 h ft; 1 h ft = 1.273 ft 3). [42]
The height proportion exhibits a maximum of 17.23% of the shape value and a minimum of 6.55%, the girth (minimum of 19 feet in the data set) exhibits a maximum of 58.25% and a minimum of 40.25%, and Average Crown Spread maximum of 49.08% and a minimum of 30.92%.
The area of an isosceles (or any) trapezoid is equal to the average of the lengths of the base and top (the parallel sides) times the height. In the adjacent diagram, if we write AD = a, and BC = b, and the height h is the length of a line segment between AD and BC that is perpendicular to them, then the area K is
Apothem of a hexagon Graphs of side, s; apothem, a; and area, A of regular polygons of n sides and circumradius 1, with the base, b of a rectangle with the same area. The green line shows the case n = 6. The apothem (sometimes abbreviated as apo [1]) of a regular polygon is a line segment from the center to the midpoint of one of its sides.
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]