Search results
Results from the WOW.Com Content Network
The earliest examples of quenched steel may come from ancient Mesopotamia, with a relatively secure example of a fourth-century BC quench-hardened chisel from Al Mina in Turkey. [6] Book 9, lines 389-94 of Homer's Odyssey is widely cited as an early, possibly the first, written reference to quenching: [3] [7]
Dexter (also known as Dexter exchange or collisional energy transfer, colloquially known as Dexter Energy Transfer) is another dynamic quenching mechanism. [12] Dexter electron transfer is a short-range phenomenon that falls off exponentially with distance (proportional to e −kR where k is a constant that depends on the inverse of the van der Waals radius of the atom [citation needed]) and ...
The quencher then returns to the ground state through emissive decay (fluorescence) or nonradiatively (dark quenching). In nonradiative or dark decay, energy is given off via molecular vibrations (heat). With the typical μM or less concentration of sample, the heat from radiationless decay is too small to affect the temperature of the solution.
The Dexter energy transfer rate, , is indicated by the formula: = ′ [] where is the separation of the donor from the acceptor, is the sum of the Van der Waals radii of the donor and the acceptor, and ′ is the normalized spectral overlap integral, where normalized means that both emission intensity and extinction coefficient have been adjusted to unit area.
Quench polish quench (QPQ) is a specialized type of nitrocarburizing case hardening that increases corrosion resistance. It is sometimes known by the brand name of Tufftride, Tenifer or Melonite. [1] Three steps are involved: nitrocarburize ("quench"), polish, and post-oxidize ("quench"). [2]
After heating the steel to the austenite phase and then quenching it in water, the microstructure will be in the martensitic phase. This is due to the fact that the steel will change from the austenite phase to the martensite phase after quenching. Some pearlite or ferrite may be present if the quench did not rapidly cool off all the steel. [4]
Non-photochemical quenching (NPQ) is a mechanism employed by plants and algae to protect themselves from the adverse effects of high light intensity.It involves the quenching of singlet excited state chlorophylls (Chl) via enhanced internal conversion to the ground state (non-radiative decay), thus harmlessly dissipating excess excitation energy as heat through molecular vibrations.
Here, I and I 0 denote the emission intensity with and without quenching agent present, k q the rate constant of the quenching process, τ 0 the excited-state lifetime in the absence of quenching agent and [Q] the concentration of quenching agent. Thus, if the excited-state lifetime of the photoredox catalyst is known from other experiments ...