Search results
Results from the WOW.Com Content Network
In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. [1] Divided differences is a recursive division process.
Of course, only a divided-difference method can be used for such a determination. For that purpose, the divided-difference formula and/or its x 0 point should be chosen so that the formula will use, for its linear term, the two data points between which the linear interpolation of interest would be done.
One method is to write the interpolation polynomial in the Newton form (i.e. using Newton basis) and use the method of divided differences to construct the coefficients, e.g. Neville's algorithm. The cost is O(n 2) operations.
Neville's algorithm evaluates this polynomial. Neville's algorithm is based on the Newton form of the interpolating polynomial and the recursion relation for the divided differences. It is similar to Aitken's algorithm (named after Alexander Aitken), which is nowadays not used.
This expression is Newton's difference quotient (also known as a first-order divided difference). The slope of this secant line differs from the slope of the tangent line by an amount that is approximately proportional to h. As h approaches zero, the slope of the secant line approaches the slope of the tangent line.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Download as PDF; Printable version ... In mathematical analysis, the mean value theorem for divided differences generalizes the ... Then it follows from the Newton ...
Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally spaced points. The integrand must have continuous derivatives, though fairly good results may be obtained if only a few derivatives exist.