enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bayesian programming - Wikipedia

    en.wikipedia.org/wiki/Bayesian_programming

    Bayesian programming [2] is a formal and concrete implementation of this "robot". Bayesian programming may also be seen as an algebraic formalism to specify graphical models such as, for instance, Bayesian networks , dynamic Bayesian networks , Kalman filters or hidden Markov models .

  3. Nested sampling algorithm - Wikipedia

    en.wikipedia.org/wiki/Nested_sampling_algorithm

    A NestedSampler is part of the Python toolbox BayesicFitting [9] for generic model fitting and evidence calculation. It is available on GitHub. An implementation in C++, named DIAMONDS, is on GitHub. A highly modular Python parallel example for statistical physics and condensed matter physics uses is on GitHub.

  4. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    Using the language of graphical models, the Naive Bayes classifier is described by the equation below. The basic idea (or assumption) of this model is that each category has its own distribution over the codebooks, and that the distributions of each category are observably different. Take a face category and a car category for an example.

  5. Naive Bayes classifier - Wikipedia

    en.wikipedia.org/wiki/Naive_Bayes_classifier

    Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.

  6. Statistical classification - Wikipedia

    en.wikipedia.org/wiki/Statistical_classification

    An algorithm that implements classification, especially in a concrete implementation, is known as a classifier. The term "classifier" sometimes also refers to the mathematical function, implemented by a classification algorithm, that maps input data to a category. Terminology across fields is quite varied.

  7. Bayes error rate - Wikipedia

    en.wikipedia.org/wiki/Bayes_error_rate

    Download QR code; Print/export Download as PDF; ... (into, for example, ... Naive Bayes classifier; References

  8. Linear classifier - Wikipedia

    en.wikipedia.org/wiki/Linear_classifier

    Examples of such algorithms include: Linear Discriminant Analysis (LDA)—assumes Gaussian conditional density models; Naive Bayes classifier with multinomial or multivariate Bernoulli event models. The second set of methods includes discriminative models, which attempt to maximize the quality of the output on a training set.

  9. Bayesian linear regression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_linear_regression

    Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...