Search results
Results from the WOW.Com Content Network
The list of organisms by chromosome count describes ploidy or numbers of chromosomes in the cells of various plants, animals, protists, and other living organisms.This number, along with the visual appearance of the chromosome, is known as the karyotype, [1] [2] [3] and can be found by looking at the chromosomes through a microscope.
The ZW sex-determination system is a chromosomal system that determines the sex of offspring in birds, some fish and crustaceans such as the giant river prawn, some insects (including butterflies and moths), the schistosome family of flatworms, and some reptiles, e.g. majority of snakes, lacertid lizards and monitors, including Komodo dragons.
Fusion of ancestral chromosomes left distinctive remnants of telomeres, and a vestigial centromere. Joe Hin Tjio working in Albert Levan's lab [76] found the chromosome count to be 46 using new techniques available at the time: Using cells in tissue culture; Pretreating cells in a hypotonic solution, which swells them and spreads the chromosomes
Organisms in which a particular chromosome, or chromosome segment, is under- or over-represented are said to be aneuploid (from the Greek words meaning "not", "good", and "fold"). Aneuploidy refers to a numerical change in part of the chromosome set, whereas polyploidy refers to a numerical change in the whole set of chromosomes. [44]
When a human germ cell undergoes meiosis, the diploid 46 chromosome complement is split in half to form haploid gametes. After fusion of a male and a female gamete (each containing 1 set of 23 chromosomes) during fertilization, the resulting zygote again has the full complement of 46 chromosomes: 2 sets of 23 chromosomes.
The ends of the XY chromosomes in a human cell in metaphase, highlighted here in green, are all that is left of the original autosomes that can still cross over with each other. Sex determination systems may have evolved from mating type, which is a feature of microorganisms.
Sexual differentiation is the process of development of the sex differences between males and females from an undifferentiated zygote. [1] [2] Sex determination is often distinct from sex differentiation; sex determination is the designation for the development stage towards either male or female, while sex differentiation is the pathway towards the development of the phenotype.
The thick lines are chromosomes, and the thin blue lines are fibers pulling on the chromosomes and pushing the ends of the cell apart. The cell cycle in eukaryotes: I = Interphase, M = Mitosis, G 0 = Gap 0, G 1 = Gap 1, G 2 = Gap 2, S = Synthesis, G 3 = Gap 3. Cell division is the process by which a parent cell divides into two daughter cells. [1]