Search results
Results from the WOW.Com Content Network
The action potential passes along the cell membrane causing the cell to contract, therefore the activity of the sinoatrial node results in a resting heart rate of roughly 60–100 beats per minute. All cardiac muscle cells are electrically linked to one another, by intercalated discs which allow the action potential to pass from one cell to the ...
In organic chemistry, a hemiacetal is a functional group the general formula R 1 R 2 C(OH)OR, where R 1, R 2 is a hydrogen atom or an organic substituent. They generally result from the nucleophilic addition of an alcohol (a compound with at least one hydroxy group ) to an aldehyde ( R−CH=O ) or a ketone ( R 2 C=O ) under acidic conditions.
This rate can be altered, however, by nerves that work to either increase heart rate (sympathetic nerves) or decrease it (parasympathetic nerves), as the body's oxygen demands change. Ultimately, muscle contraction revolves around a charged atom (ion) , calcium (Ca 2+ ) , [ 3 ] which is responsible for converting the electrical energy of the ...
Cardiac physiology or heart function is the study of healthy, unimpaired function of the heart: involving blood flow; myocardium structure; the electrical conduction system of the heart; the cardiac cycle and cardiac output and how these interact and depend on one another.
Cardiac muscle (also called heart muscle or myocardium) is one of three types of vertebrate muscle tissues, the others being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall of the heart .
This is done by a number of mechanisms: [citation needed] Parasympathetic activation. If the heart is experiencing anoxia, hypercapnia (increased CO 2) or acidosis, the heart cells will enter a state of dysfunction and not work properly. Correct sarcomere crossbridges will not form the heart becomes less efficient (leading to myocardial failure).
Cardiac muscle has some similarities to neurons and skeletal muscle, as well as important unique properties. Like a neuron, a given myocardial cell has a negative membrane potential when at rest. Stimulation above a threshold value induces the opening of voltage-gated ion channels and a flood of cations into the cell.
It employs pacemaker cells that produce electrical impulses, known as cardiac action potentials, which control the rate of contraction of the cardiac muscle, that is, the heart rate. In most humans, these cells are concentrated in the sinoatrial (SA) node, the primary pacemaker, which regulates the heart’s sinus rhythm.