enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tidal locking - Wikipedia

    en.wikipedia.org/wiki/Tidal_locking

    Earth's Moon's rotation and orbital periods are tidally locked with each other, so no matter when the Moon is observed from Earth, the same hemisphere of the Moon is always seen. Most of the far side of the Moon was not seen until 1959, when photographs of most of the far side were transmitted from the Soviet spacecraft Luna 3 .

  3. Orbit of the Moon - Wikipedia

    en.wikipedia.org/wiki/Orbit_of_the_Moon

    [20] [21] By that time, Earth and the Moon would be in a mutual spin–orbit resonance or tidal locking, in which the Moon will orbit Earth in about 47 days (currently 27 days), and both the Moon and Earth would rotate around their axes in the same time, always facing each other with the same side. This has already happened to the Moon—the ...

  4. Earth tide - Wikipedia

    en.wikipedia.org/wiki/Earth_tide

    Body tides also exist in other astronomical objects, such as planets and moons. In Earth's moon, body tides "vary by about ±0.1 m each month." [11] It plays a key role in long-term dynamics of planetary systems. For example, it is due to body tides in the Moon that it is captured into the 1:1 spin-orbit resonance and is always showing us one side.

  5. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).

  6. Theory of tides - Wikipedia

    en.wikipedia.org/wiki/Theory_of_tides

    High and low tide in the Bay of Fundy. The theory of tides is the application of continuum mechanics to interpret and predict the tidal deformations of planetary and satellite bodies and their atmospheres and oceans (especially Earth's oceans) under the gravitational loading of another astronomical body or bodies (especially the Moon and Sun).

  7. Moon - Wikipedia

    en.wikipedia.org/wiki/Moon

    The tidally locked synchronous rotation of the Moon as it orbits the Earth results in it always keeping nearly the same face turned towards the planet. The side of the Moon that faces Earth is called the near side, and the opposite the far side. The far side is often inaccurately called the "dark side", but it is in fact illuminated as often as ...

  8. Tidal acceleration - Wikipedia

    en.wikipedia.org/wiki/Tidal_acceleration

    In other words, they orbit their planet faster than the planet rotates. In this case the tidal bulges raised by the moon on their planet lag behind the moon, and act to decelerate it in its orbit. The net effect is a decay of that moon's orbit as it gradually spirals towards the planet. The planet's rotation also speeds up slightly in the process.

  9. Lunar precession - Wikipedia

    en.wikipedia.org/wiki/Lunar_precession

    Approximate axial parallelism of the Moon's orbit results in relative revolution of the lunar nodes as the Earth revolves around the Sun. This causes an eclipse season approximately every six months. Nodal precession occurs every 18.6 years. The lunar nodes are the points where the Moon's orbit intersects the ecliptic