enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Algebraic expression - Wikipedia

    en.wikipedia.org/wiki/Algebraic_expression

    Since taking the square root is the same as raising to the power ⁠ 1 / 2 ⁠, the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .

  3. Irreducible fraction - Wikipedia

    en.wikipedia.org/wiki/Irreducible_fraction

    In the second step, they were divided by 3. The final result, ⁠ 4 / 3 ⁠, is an irreducible fraction because 4 and 3 have no common factors other than 1. The original fraction could have also been reduced in a single step by using the greatest common divisor of 90 and 120, which is 30. As 120 ÷ 30 = 4, and 90 ÷ 30 = 3, one gets

  4. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    0 < √ D − n < 1. If the square root of D is rational, then it can be written as the irreducible fraction p/q, so that q is the smallest possible denominator, and hence the smallest number for which q √ D is also an integer. Then: (√ D − n)q √ D = qD − nq √ D. which is thus also an integer. But 0 < (√ D − n) < 1 so (√ D − ...

  5. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    This polynomial has no rational roots, since the rational root theorem shows that the only possibilities are ±1, but x 0 is greater than 1. So x 0 is an irrational algebraic number. There are countably many algebraic numbers, since there are countably many integer polynomials.

  6. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    Likewise, tan ⁠ 3 π / 16 ⁠, tan ⁠ 7 π / 16 ⁠, tan ⁠ 11 π / 16 ⁠, and tan ⁠ 15 π / 16 ⁠ satisfy the irreducible polynomial x 4 − 4x 3 − 6x 2 + 4x + 1 = 0, and so are conjugate algebraic integers. This is the equivalent of angles which, when measured in degrees, have rational numbers. [2] Some but not all irrational ...

  7. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Using scientific notation, a number is decomposed into the product of a number between 1 and 10, called the significand, and 10 raised to some integer power, called the exponent. The significand consists of the significant digits of the number, and is written as a leading digit 1–9 followed by a decimal point and a sequence of digits 0–9.

  8. Dedekind cut - Wikipedia

    en.wikipedia.org/wiki/Dedekind_cut

    [3] Dedekind cuts can be generalized from the rational numbers to any totally ordered set by defining a Dedekind cut as a partition of a totally ordered set into two non-empty parts A and B, such that A is closed downwards (meaning that for all a in A, x ≤ a implies that x is in A as well) and B is closed upwards, and A contains

  9. Nested radical - Wikipedia

    en.wikipedia.org/wiki/Nested_radical

    In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.