Ad
related to: parallelogram proofs examples problems math answers pdf download
Search results
Results from the WOW.Com Content Network
An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...
Vectors involved in the parallelogram law. In a normed space, the statement of the parallelogram law is an equation relating norms: ‖ ‖ + ‖ ‖ = ‖ + ‖ + ‖ ‖,.. The parallelogram law is equivalent to the seemingly weaker statement: ‖ ‖ + ‖ ‖ ‖ + ‖ + ‖ ‖, because the reverse inequality can be obtained from it by substituting (+) for , and () for , and then simplifying.
List of mathematical proofs; List of misnamed theorems; List of scientific laws; List of theories; Most of the results below come from pure mathematics, but some are from theoretical physics, economics, and other applied fields.
The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram. The base × height area formula can also be derived using the figure to the right. The area K of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the ...
If the quadrilateral is a parallelogram, then the midpoints of the diagonals coincide so that the connecting line segment has length 0. In addition the parallel sides are of equal length, hence Euler's theorem reduces to + = + which is the parallelogram law.
Proof of Apollonius's theorem. The theorem can be proved as a special case of Stewart's theorem, or can be proved using vectors (see parallelogram law). The following is an independent proof using the law of cosines. [1] Let the triangle have sides ,, with a median drawn to side .
Even more generally, if the sums of squares of distances from a point P to the two pairs of opposite corners of a parallelogram are compared, the two sums will not in general be equal, but the difference between the two sums will depend only on the shape of the parallelogram and not on the choice of P. [5]
Given any parallelogram, construct on its sides four squares external to the parallelogram. The quadrilateral formed by joining the centers of those four squares is a square. [1] It is a special case of van Aubel's theorem and a square version of the Napoleon's theorem.
Ad
related to: parallelogram proofs examples problems math answers pdf download