enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Set-builder notation - Wikipedia

    en.wikipedia.org/wiki/Set-builder_notation

    Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to true for an element of the set, and false otherwise. [2] In this form, set-builder notation has three parts: a variable, a colon or vertical bar separator, and a predicate. Thus there is a variable on the left of the ...

  3. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    Set-builder notation: denotes the set whose elements are listed between the braces, separated by commas. Set-builder notation : if P ( x ) {\displaystyle P(x)} is a predicate depending on a variable x , then both { x : P ( x ) } {\displaystyle \{x:P(x)\}} and { x ∣ P ( x ) } {\displaystyle \{x\mid P(x)\}} denote the set formed by the values ...

  4. List comprehension - Wikipedia

    en.wikipedia.org/wiki/List_comprehension

    Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.

  5. Symmetric difference - Wikipedia

    en.wikipedia.org/wiki/Symmetric_difference

    In mathematics, the symmetric difference of two sets, also known as the disjunctive union and set sum, is the set of elements which are in either of the sets, but not in their intersection. For example, the symmetric difference of the sets { 1 , 2 , 3 } {\displaystyle \{1,2,3\}} and { 3 , 4 } {\displaystyle \{3,4\}} is { 1 , 2 , 4 ...

  6. Naive set theory - Wikipedia

    en.wikipedia.org/wiki/Naive_set_theory

    This notation is called set-builder notation (or "set comprehension", particularly in the context of Functional programming). Some variants of set builder notation are: {x ∈ A | P(x)} denotes the set of all x that are already members of A such that the condition P holds for x.

  7. Union (set theory) - Wikipedia

    en.wikipedia.org/wiki/Union_(set_theory)

    The last of these notations refers to the union of the collection {:}, where I is an index set and is a set for every ⁠ ⁠. In the case that the index set I is the set of natural numbers , one uses the notation ⋃ i = 1 ∞ A i {\textstyle \bigcup _{i=1}^{\infty }A_{i}} , which is analogous to that of the infinite sums in series.

  8. Intersection (set theory) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(set_theory)

    The reason is as follows: The intersection of the collection is defined as the set (see set-builder notation) = {:,}. If M {\displaystyle M} is empty, there are no sets A {\displaystyle A} in M , {\displaystyle M,} so the question becomes "which x {\displaystyle x} 's satisfy the stated condition?"

  9. Vertical bar - Wikipedia

    en.wikipedia.org/wiki/Vertical_bar

    An initial draft for a 7-bit character set that was published by the X3.2 subcommittee for Coded Character Sets and Data Format on June 8, 1961, was the first to include the vertical bar in a standard set. The bar was intended to be used as the representation for the logical OR symbol. [9]