Search results
Results from the WOW.Com Content Network
It is known that a Strassen-like algorithm with a 2x2-block matrix step requires at least 7 block matrix multiplications. In 1976 Probert [16] showed that such an algorithm requires at least 15 additions (including subtractions), however, a hidden assumption was that the blocks and the 2x2-block matrix are represented in the same basis ...
The left column visualizes the calculations necessary to determine the result of a 2x2 matrix multiplication. Naïve matrix multiplication requires one multiplication for each "1" of the left column. Each of the other columns (M1-M7) represents a single one of the 7 multiplications in the Strassen algorithm.
Computing the k th power of a matrix needs k – 1 times the time of a single matrix multiplication, if it is done with the trivial algorithm (repeated multiplication). As this may be very time consuming, one generally prefers using exponentiation by squaring , which requires less than 2 log 2 k matrix multiplications, and is therefore much ...
The best known lower bound for matrix-multiplication complexity is Ω(n 2 log(n)), for bounded coefficient arithmetic circuits over the real or complex numbers, and is due to Ran Raz. [33] The exponent ω is defined to be a limit point, in that it is the infimum of the exponent over all matrix multiplication algorithms. It is known that this ...
There are at least two ways of representing quaternions as matrices in such a way that quaternion addition and multiplication correspond to matrix addition and matrix multiplication. One is to use 2 × 2 complex matrices, and the other is to use 4 × 4 real matrices. In each case, the representation given is one of a family of linearly related ...
A group in which the objects are matrices and the group operation is matrix multiplication is called a matrix group. [65] [66] Since a group of every element must be invertible, the most general matrix groups are the groups of all invertible matrices of a given size, called the general linear groups.
An N-point DFT is expressed as the multiplication =, where is the original input signal, is the N-by-N square DFT matrix, and is the DFT of the signal. The transformation matrix W {\displaystyle W} can be defined as W = ( ω j k N ) j , k = 0 , … , N − 1 {\displaystyle W=\left({\frac {\omega ^{jk}}{\sqrt {N}}}\right)_{j,k=0,\ldots ,N-1 ...
See matrix multiplication algorithm. Pages in category "Matrix multiplication algorithms" The following 4 pages are in this category, out of 4 total.