Search results
Results from the WOW.Com Content Network
The SB-FET (Schottky-barrier field-effect transistor) is a field-effect transistor with metallic source and drain contact electrodes, which create Schottky barriers at both the source-channel and drain-channel interfaces. [64] [65] The GFET is a highly sensitive graphene-based field effect transistor used as biosensors and chemical sensors.
In physics, the field effect refers to the modulation of the electrical conductivity of a material by the application of an external electric field. In a metal , the electron density that responds to applied fields is so large that an external electric field can penetrate only a very short distance into the material.
In field-effect transistors (FETs), depletion mode and enhancement mode are two major transistor types, corresponding to whether the transistor is in an on state or an off state at zero gate–source voltage. Enhancement-mode MOSFETs (metal–oxide–semiconductor FETs) are the common switching elements in most integrated circuits.
The threshold voltage, commonly abbreviated as V th or V GS(th), of a field-effect transistor (FET) is the minimum gate-to-source voltage (V GS) that is needed to create a conducting path between the source and drain terminals. It is an important scaling factor to maintain power efficiency.
MOSFET, showing gate (G), body (B), source (S), and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).. The MOSFET (metal–oxide–semiconductor field-effect transistor) [1] is a type of insulated-gate field-effect transistor (IGFET) that is fabricated by the controlled oxidation of a semiconductor, typically silicon.
The VMOS structure has a V-groove at the gate region. A VMOS (/ ˈ v iː m ɒ s /) (vertical metal oxide semiconductor or V-groove MOS) transistor is a type of metal–oxide–semiconductor field-effect transistor ().
A double-gate FinFET device. A fin field-effect transistor (FinFET) is a multigate device, a MOSFET (metal–oxide–semiconductor field-effect transistor) built on a substrate where the gate is placed on two, three, or four sides of the channel or wrapped around the channel (gate all around), forming a double or even multi gate structure.
The concept of a field-effect transistor (FET) was first proposed by Julius Edgar Lilienfeld, who received a patent for his idea in 1930. [6] He proposed that a field-effect transistor behaves as a capacitor with a conducting channel between a source and a drain electrode. Applied voltage on the gate electrode controls the amount of charge ...