Search results
Results from the WOW.Com Content Network
Inner product spaces are a subset of normed vector spaces, which are a subset of metric spaces, which in turn are a subset of topological spaces. In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers on which a norm is defined. [1]
In linear algebra, a branch of mathematics, the polarization identity is any one of a family of formulas that express the inner product of two vectors in terms of the norm of a normed vector space. If a norm arises from an inner product then the polarization identity can be used to express this inner product entirely in terms of the norm.
Banach lattices are extremely common in functional analysis, and "every known example [in 1948] of a Banach space [was] also a vector lattice." [1] In particular: ℝ, together with its absolute value as a norm, is a Banach lattice.
If is a reflexive Banach space then this conclusion is also true when = [2]. Metric reformulation. As usual, let (,):= ‖ ‖ denote the canonical metric induced by the norm, call the set {: ‖ ‖ =} of all vectors that are a distance of from the origin the unit sphere, and denote the distance from a point to the set by (,) := (,) = ‖ ‖.
This is a list of vector spaces in abstract mathematics, by Wikipedia page. Banach space; Besov space; Bochner space; Dual space; Euclidean space; Fock space; Fréchet space; Hardy space; Hilbert space; Hölder space; LF-space; L p space; Minkowski space; Montel space; Morrey–Campanato space; Orlicz space; Riesz space; Schwartz space; Sobolev ...
A T 4 space is a T 1 space X that is normal; this is equivalent to X being normal and Hausdorff. A completely normal space, or hereditarily normal space, is a topological space X such that every subspace of X is a normal space. It turns out that X is completely normal if and only if every two separated sets can be separated by neighbourhoods.
In functional analysis, a discipline within mathematics, an operator space is a normed vector space (not necessarily a Banach space) [1] "given together with an isometric embedding into the space B(H) of all bounded operators on a Hilbert space H.". [2] [3] The appropriate morphisms between operator spaces are completely bounded maps.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file