enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Huffman coding - Wikipedia

    en.wikipedia.org/wiki/Huffman_coding

    Huffman tree generated from the exact frequencies of the text "this is an example of a huffman tree". Encoding the sentence with this code requires 135 (or 147) bits, as opposed to 288 (or 180) bits if 36 characters of 8 (or 5) bits were used (This assumes that the code tree structure is known to the decoder and thus does not need to be counted as part of the transmitted information).

  3. Canonical Huffman code - Wikipedia

    en.wikipedia.org/wiki/Canonical_Huffman_code

    In computer science and information theory, a canonical Huffman code is a particular type of Huffman code with unique properties which allow it to be described in a very compact manner. Rather than storing the structure of the code tree explicitly, canonical Huffman codes are ordered in such a way that it suffices to only store the lengths of ...

  4. Trie - Wikipedia

    en.wikipedia.org/wiki/Trie

    In computer science, a trie (/ ˈ t r aɪ /, / ˈ t r iː /), also known as a digital tree or prefix tree, [1] is a specialized search tree data structure used to store and retrieve strings from a dictionary or set. Unlike a binary search tree, nodes in a trie do not store their associated key.

  5. Weight-balanced tree - Wikipedia

    en.wikipedia.org/wiki/Weight-balanced_tree

    Join: The function Join is on two weight-balanced trees t 1 and t 2 and a key k and will return a tree containing all elements in t 1, t 2 as well as k. It requires k to be greater than all keys in t 1 and smaller than all keys in t 2. If the two trees have the balanced weight, Join simply create a new node with left subtree t 1, root k and ...

  6. Greedy algorithm - Wikipedia

    en.wikipedia.org/wiki/Greedy_algorithm

    A greedy algorithm is used to construct a Huffman tree during Huffman coding where it finds an optimal solution. In decision tree learning, greedy algorithms are commonly used, however they are not guaranteed to find the optimal solution. One popular such algorithm is the ID3 algorithm for decision tree construction.

  7. Block code - Wikipedia

    en.wikipedia.org/wiki/Block_code

    The rate of a block code is defined as the ratio between its message length and its block length: = /. A large rate means that the amount of actual message per transmitted block is high.

  8. Deflate - Wikipedia

    en.wikipedia.org/wiki/DEFLATE

    Instructions to generate the necessary Huffman tree immediately follow the block header. The static Huffman option is used for short messages, where the fixed saving gained by omitting the tree outweighs the percentage compression loss due to using a non-optimal (thus, not technically Huffman) code. Compression is achieved through two steps:

  9. Package-merge algorithm - Wikipedia

    en.wikipedia.org/wiki/Package-merge_algorithm

    The package-merge algorithm is an O(nL)-time algorithm for finding an optimal length-limited Huffman code for a given distribution on a given alphabet of size n, where no code word is longer than L. It is a greedy algorithm , and a generalization of Huffman's original algorithm .