enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Gauss's law for magnetism: magnetic field lines never begin nor end but form loops or extend to infinity as shown here with the magnetic field due to a ring of current. Gauss's law for magnetism states that electric charges have no magnetic analogues, called magnetic monopoles; no north or south magnetic poles exist in isolation. [3]

  3. Gauss's law for magnetism - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law_for_magnetism

    Rather than "magnetic charges", the basic entity for magnetism is the magnetic dipole. (If monopoles were ever found, the law would have to be modified, as elaborated below.) Gauss's law for magnetism can be written in two forms, a differential form and an integral form. These forms are equivalent due to the divergence theorem.

  4. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    In three dimensions, the derivative has a special structure allowing the introduction of a cross product: = + = + from which it is easily seen that Gauss's law is the scalar part, the Ampère–Maxwell law is the vector part, Faraday's law is the pseudovector part, and Gauss's law for magnetism is the pseudoscalar part of the equation.

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  6. Introduction to electromagnetism - Wikipedia

    en.wikipedia.org/wiki/Introduction_to...

    The third of Maxwell's equations is called the Ampère–Maxwell law. It states that a magnetic field can be generated by an electric current. [13] The direction of the magnetic field is given by Ampère's right-hand grip rule. If the wire is straight, then the magnetic field is curled around it like the gripped fingers in the right-hand rule.

  7. Gauss's law - Wikipedia

    en.wikipedia.org/wiki/Gauss's_law

    Strictly speaking, Gauss's law cannot be derived from Coulomb's law alone, since Coulomb's law gives the electric field due to an individual, electrostatic point charge only. However, Gauss's law can be proven from Coulomb's law if it is assumed, in addition, that the electric field obeys the superposition principle .

  8. A Treatise on Electricity and Magnetism - Wikipedia

    en.wikipedia.org/wiki/A_Treatise_on_Electricity...

    A Treatise on Electricity and Magnetism at Internet Archive. 1st edition 1873 Volume 1, Volume 2; 2nd edition 1881 Volume 1, Volume 2; 3rd edition 1892 (ed. J. J. Thomson) Volume 1, Volume 2; 3rd edition 1892 (Dover reprint 1954) Volume 1, Volume 2; Original Maxwell Equations – Maxwell's 20 Equations in 20 Unknowns – PDF

  9. Magnetism - Wikipedia

    en.wikipedia.org/wiki/Magnetism

    Magnetism is the class of physical attributes that occur through a magnetic field, which allows objects to attract or repel each other.Because both electric currents and magnetic moments of elementary particles give rise to a magnetic field, magnetism is one of two aspects of electromagnetism.