Search results
Results from the WOW.Com Content Network
A triangle's centroid is the point that maximizes the product of the directed distances of a point from the triangle's sidelines. [ 20 ] Let A B C {\displaystyle ABC} be a triangle, let G {\displaystyle G} be its centroid, and let D , E , F {\displaystyle D,E,F} be the midpoints of segments B C , C A , A B , {\displaystyle BC,CA,AB,} respectively.
The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object X {\displaystyle X} in n {\displaystyle n} - dimensional space is the intersection of all hyperplanes that divide X {\displaystyle X} into two parts of equal moment about the hyperplane.
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid , circumcenter , incenter and orthocenter were familiar to the ancient Greeks , and can be obtained by simple constructions .
In geometry, the Euler line, named after Leonhard Euler (/ ˈ ɔɪ l ər / OY-lər), is a line determined from any triangle that is not equilateral.It is a central line of the triangle, and it passes through several important points determined from the triangle, including the orthocenter, the circumcenter, the centroid, the Exeter point and the center of the nine-point circle of the triangle.
If a non-zero f has both these properties it is called a triangle center function. If f is a triangle center function and a, b, c are the side-lengths of a reference triangle then the point whose trilinear coordinates are f(a,b,c) : f(b,c,a) : f(c,a,b) is called a triangle center.
In coordinate geometry, the Section formula is a formula used to find the ratio in which a line segment is divided by a point internally or externally. [1] It is used to find out the centroid, incenter and excenters of a triangle. In physics, it is used to find the center of mass of systems, equilibrium points, etc. [2] [3] [4] [5]
The Cartesian coordinates of the incenter are a weighted average of the coordinates of the three vertices using the side lengths of the triangle relative to the perimeter—i.e., using the barycentric coordinates given above, normalized to sum to unity—as weights. (The weights are positive so the incenter lies inside the triangle as stated ...
The nine-point center is the circumcenter of the medial triangle of the given triangle, the circumcenter of the orthic triangle of the given triangle, and the circumcenter of the Euler triangle. More generally it is the circumcenter of any triangle defined from three of the nine points defining the nine-point circle. [citation needed]