enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chauvenet's criterion - Wikipedia

    en.wikipedia.org/wiki/Chauvenet's_criterion

    The idea behind Chauvenet's criterion finds a probability band that reasonably contains all n samples of a data set, centred on the mean of a normal distribution.By doing this, any data point from the n samples that lies outside this probability band can be considered an outlier, removed from the data set, and a new mean and standard deviation based on the remaining values and new sample size ...

  3. Dixon's Q test - Wikipedia

    en.wikipedia.org/wiki/Dixon's_Q_test

    However, at 95% confidence, Q = 0.455 < 0.466 = Q table 0.167 is not considered an outlier. McBane [ 1 ] notes: Dixon provided related tests intended to search for more than one outlier, but they are much less frequently used than the r 10 or Q version that is intended to eliminate a single outlier.

  4. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses: H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set

  5. Outlier - Wikipedia

    en.wikipedia.org/wiki/Outlier

    The modified Thompson Tau test is used to find one outlier at a time (largest value of δ is removed if it is an outlier). Meaning, if a data point is found to be an outlier, it is removed from the data set and the test is applied again with a new average and rejection region. This process is continued until no outliers remain in a data set.

  6. Winsorizing - Wikipedia

    en.wikipedia.org/wiki/Winsorizing

    The distribution of many statistics can be heavily influenced by outliers, values that are 'way outside' the bulk of the data. A typical strategy to account for, without eliminating altogether, these outlier values is to 'reset' outliers to a specified percentile (or an upper and lower percentile) of the data. For example, a 90% winsorization ...

  7. Pruning (morphology) - Wikipedia

    en.wikipedia.org/wiki/Pruning_(morphology)

    In the MATLAB example below, it takes the original image (below left) and skeletonize it 40 times then prunes the image to remove the spurs as per the MATLAB code above. As shown (below right) this removed the majority of all spurs resulting in a cleaner image.

  8. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    Cross-validation can be used to compare the performances of different predictive modeling procedures. For example, suppose we are interested in optical character recognition, and we are considering using either a Support Vector Machine (SVM) or k-nearest neighbors (KNN) to predict the true character from an image of a handwritten character ...

  9. Autoregressive integrated moving average - Wikipedia

    en.wikipedia.org/wiki/Autoregressive_integrated...

    Automatic outlier detection is available for seven types of outliers, and the detected outliers will be accommodated in the time-series model if this feature is selected. SAP: the APO-FCS package [17] in SAP ERP from SAP allows creation and fitting of ARIMA models using the Box–Jenkins methodology.