Search results
Results from the WOW.Com Content Network
Cubic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x 3 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of the main theorem, which states that if p and q are primary numbers in the ring of Eisenstein integers, both coprime to 3, the congruence x 3 ≡ p (mod q) is solvable if and only if ...
Quartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x 4 ≡ p (mod q) is solvable; the word "reciprocity" comes from the form of some of these theorems, in that they relate the solvability of the congruence x 4 ≡ p (mod q) to that of x 4 ≡ q (mod p).
In differential geometry, the Atiyah–Singer index theorem, proved by Michael Atiyah and Isadore Singer (1963), [1] states that for an elliptic differential operator on a compact manifold, the analytical index (related to the dimension of the space of solutions) is equal to the topological index (defined in terms of some topological data).
Prominent careers for professional mathematicians include math teacher or professor, statistician, actuary, financial analyst, economist, accountant, commodity trader, or computer consultant. [ 181 ] Archaeological evidence shows that instruction in mathematics occurred as early as the second millennium BCE in ancient Babylonia. [ 182 ]
[9] In the case when | g ( x )| diverges to infinity as x approaches c and f ( x ) converges to a finite limit at c , then L'Hôpital's rule would be applicable, but not absolutely necessary, since basic limit calculus will show that the limit of f ( x )/ g ( x ) as x approaches c must be zero.
AOL latest headlines, entertainment, sports, articles for business, health and world news.
The situation that appears in the derangement example above occurs often enough to merit special attention. [7] Namely, when the size of the intersection sets appearing in the formulas for the principle of inclusion–exclusion depend only on the number of sets in the intersections and not on which sets appear. More formally, if the intersection
In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power (+) expands into a polynomial with terms of the form , where the exponents and are nonnegative integers satisfying + = and the coefficient of each term is a specific positive integer ...