Search results
Results from the WOW.Com Content Network
For an n-sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as {n/m}. If m is 2, for example, then every second point is joined. If m is 3, then every third point is joined. The boundary of the polygon winds around the center m times. The (non-degenerate) regular stars of up to 12 ...
Individual polygons are named (and sometimes classified) according to the number of sides, combining a Greek-derived numerical prefix with the suffix -gon, e.g. pentagon, dodecagon. The triangle, quadrilateral and nonagon are exceptions, although the regular forms trigon, tetragon, and enneagon are sometimes encountered as well.
Coxeter states that every zonogon (a 2m-gon whose opposite sides are parallel and of equal length) can be dissected into m(m-1)/2 parallelograms. [8] In particular this is true for regular polygons with evenly many sides, in which case the parallelograms are all rhombi. For the regular decagon, m=5, and it can be divided into 10 rhombs, with ...
A regular polygon with n sides can be constructed with ruler, compass, and angle trisector if and only if =, where r, s, k ≥ 0 and where the p i are distinct Pierpont primes greater than 3 (primes of the form +). [8]: Thm. 2 These polygons are exactly the regular polygons that can be constructed with Conic section, and the regular polygons ...
In general, for any natural number n, there are regular n-pointed stars with Schläfli symbols {n/m} for all m such that m < n/2 (strictly speaking {n/m} = {n/(n − m)}) and m and n are coprime (as such, all stellations of a polygon with a prime number of sides will be regular stars). Symbols where m and n are not coprime may be used to ...
In geometry, an octagon (from Ancient Greek ὀκτάγωνον (oktágōnon) 'eight angles') is an eight-sided polygon or 8-gon. A regular octagon has Schläfli symbol {8} [1] and can also be constructed as a quasiregular truncated square, t{4}, which alternates two types of edges.
A convex regular polygon having n sides is denoted by {n}. So an equilateral triangle is {3}, a square {4}, and so on indefinitely. A regular n-sided star polygon which winds m times around its centre is denoted by the fractional value {n/m}, where n and m are co-prime, so a regular pentagram is {5/2}.
This is the symmetry group of a regular polygon with n sides (for n ≥ 3; this extends to the cases n = 1 and n = 2 where we have a plane with respectively a point offset from the "center" of the "1-gon" and a "2-gon" or line segment). D n is generated by a rotation r of order n and a reflection s of order 2 such that