enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Java: Class java.math.BigInteger (integer), java.math.BigDecimal Class (decimal) JavaScript: as of ES2020, BigInt is supported in most browsers; [2] the gwt-math library provides an interface to java.math.BigDecimal, and libraries such as DecimalJS, BigInt and Crunch support arbitrary-precision integers.

  3. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    With the example in view, a number of details can be discussed. The most important is the choice of the representation of the big number. In this case, only integer values are required for digits, so an array of fixed-width integers is adequate. It is convenient to have successive elements of the array represent higher powers of the base.

  4. Primitive wrapper class in Java - Wikipedia

    en.wikipedia.org/.../Primitive_wrapper_class_in_Java

    Primitive wrapper classes are not the same thing as primitive types. Whereas variables, for example, can be declared in Java as data types double, short, int, etc., the primitive wrapper classes create instantiated objects and methods that inherit but hide the primitive data types, not like variables that are assigned the data type values.

  5. Comparison of programming languages (basic instructions)

    en.wikipedia.org/wiki/Comparison_of_programming...

    "PIC S9999", for example, would require a signed variable of four decimal digits precision. If specified as a binary field, this would select a 16-bit signed type on most platforms. ^i Smalltalk automatically chooses an appropriate representation for integral numbers.

  6. Baillie–PSW primality test - Wikipedia

    en.wikipedia.org/wiki/Baillie–PSW_primality_test

    The BigInteger class in standard versions of Java and in open-source implementations like OpenJDK has a method called isProbablePrime. This method does one or more Miller–Rabin tests with random bases. If n, the number being tested, has 100 bits or more, this method also does a non-strong Lucas test that checks whether U n+1 is 0 (mod n).

  7. Integer (computer science) - Wikipedia

    en.wikipedia.org/wiki/Integer_(computer_science)

    An integral type with n bits can encode 2 n numbers; for example an unsigned type typically represents the non-negative values 0 through 2 n − 1. Other encodings of integer values to bit patterns are sometimes used, for example binary-coded decimal or Gray code, or as printed character codes such as ASCII.

  8. Extended Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Extended_Euclidean_algorithm

    For example, if the polynomial used to define the finite field GF(2 8) is p = x 8 + x 4 + x 3 + x + 1, and a = x 6 + x 4 + x + 1 is the element whose inverse is desired, then performing the algorithm results in the computation described in the following table.

  9. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.