enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Normed vector space - Wikipedia

    en.wikipedia.org/wiki/Normed_vector_space

    A norm induces a distance, called its (norm) induced metric, by the formula (,) = ‖ ‖. which makes any normed vector space into a metric space and a topological vector space. If this metric space is complete then the normed space is a Banach space .

  3. Norm (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Norm_(mathematics)

    In mathematics, a norm is a function from a real or complex vector space to the non-negative real numbers that behaves in certain ways like the distance from the origin: it commutes with scaling, obeys a form of the triangle inequality, and is zero only at the origin.

  4. Unit vector - Wikipedia

    en.wikipedia.org/wiki/Unit_vector

    In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in ^ (pronounced "v-hat"). The normalized vector û of a non-zero vector u is the unit vector in the direction of u, i.e.,

  5. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length. An orthonormal set which forms a basis is called an orthonormal basis.

  6. Normal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Normal_(geometry)

    A normal vector of length one is called a unit normal vector. A curvature vector is a normal vector whose length is the curvature of the object. Multiplying a normal vector by −1 results in the opposite vector, which may be used for indicating sides (e.g., interior or exterior).

  7. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    Normed vector spaces also define an operation known as the norm (or determination of magnitude). Inner product spaces also define an operation known as the inner product. In , the inner product is known as the dot product.

  8. Hesse normal form - Wikipedia

    en.wikipedia.org/wiki/Hesse_normal_form

    Distance from the origin O to the line E calculated with the Hesse normal form. Normal vector in red, line in green, point O shown in blue. In analytic geometry, the Hesse normal form (named after Otto Hesse) is an equation used to describe a line in the Euclidean plane, a plane in Euclidean space, or a hyperplane in higher dimensions.

  9. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    The zero vector is the vector with length zero. Written out in coordinates, the vector is (0, 0, 0), and it is commonly denoted , 0, or simply 0. Unlike any other vector, it has an arbitrary or indeterminate direction, and cannot be normalized (that is, there is no unit vector that is a multiple of the zero vector).