enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hexagon - Wikipedia

    en.wikipedia.org/wiki/Hexagon

    A regular skew hexagon seen as edges (black) of a triangular antiprism, symmetry D 3d, [2 +,6], (2*3), order 12. A skew hexagon is a skew polygon with six vertices and edges but not existing on the same plane. The interior of such a hexagon is not generally defined. A skew zig-zag hexagon has vertices alternating between two parallel planes.

  3. Hexagonal number - Wikipedia

    en.wikipedia.org/wiki/Hexagonal_number

    Proof without words that a hexagonal number (middle column) can be rearranged as rectangular and odd-sided triangular numbers. A hexagonal number is a figurate number.The nth hexagonal number h n is the number of distinct dots in a pattern of dots consisting of the outlines of regular hexagons with sides up to n dots, when the hexagons are overlaid so that they share one vertex.

  4. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    The two diagonals and the two tangency chords are concurrent. [11] [10]: p.11 One way to see this is as a limiting case of Brianchon's theorem, which states that a hexagon all of whose sides are tangent to a single conic section has three diagonals that meet at a point. From a tangential quadrilateral, one can form a hexagon with two 180 ...

  5. Centered hexagonal number - Wikipedia

    en.wikipedia.org/wiki/Centered_hexagonal_number

    Centered hexagonal numbers appearing in the Catan board game: 19 land tiles, 37 total tiles. In mathematics and combinatorics, a centered hexagonal number, or hex number, [1] [2] is a centered figurate number that represents a hexagon with a dot in the center and all other dots surrounding the center dot in a hexagonal lattice.

  6. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    This formula cannot be used if the quadrilateral is a right kite, since the denominator is zero in that case. If M, N are the midpoints of the diagonals, and E, F are the intersection points of the extensions of opposite sides, then the area of a bicentric quadrilateral is given by

  7. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Brianchon's theorem - Wikipedia

    en.wikipedia.org/wiki/Brianchon's_theorem

    Brianchon's theorem can be proved by the idea of radical axis or reciprocation. To prove it take an arbitrary length (MN) and carry it on the tangents starting from the contact points: PL = RJ = QH = MN etc. Draw circles a, b, c tangent to opposite sides of the hexagon at the created points (H,W), (J,V) and (L,Y) respectively.