Search results
Results from the WOW.Com Content Network
In mathematics, the axiom of choice, abbreviated AC or AoC, is an axiom of set theory equivalent to the statement that a Cartesian product of a collection of non-empty sets is non-empty. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by ...
In axiomatic set theory, the axiom of empty set, [1] [2] also called the axiom of null set [3] and the axiom of existence, [4] [5] is a statement that asserts the existence of a set with no elements. [3]
Some axiomatic set theories ensure that the empty set exists by including an axiom of empty set, while in other theories, its existence can be deduced. Many possible properties of sets are vacuously true for the empty set. Any set other than the empty set is called non-empty.
Thus the empty set is added at stage 1, and the set containing the empty set is added at stage 2. [11] The collection of all sets that are obtained in this way, over all the stages, is known as V. The sets in V can be arranged into a hierarchy by assigning to each set the first stage at which that set was added to V.
The empty set is a subset of every set (the statement that all elements of the empty set are also members of any set A is vacuously true). The set of all subsets of a given set A is called the power set of A and is denoted by or (); the "P" is sometimes in a script font: ℘ .
Together with the axiom of choice (see below), these are the de facto standard axioms for contemporary mathematics or set theory. They can be easily adapted to analogous theories, such as mereology. Axiom of extensionality; Axiom of empty set; Axiom of pairing; Axiom of union; Axiom of infinity; Axiom schema of replacement; Axiom of power set ...
Let the non-empty set S be a counter-example to the axiom of regularity; that is, every element of S has a non-empty intersection with S. We define a binary relation R on S by a R b :⇔ b ∈ S ∩ a {\textstyle aRb:\Leftrightarrow b\in S\cap a} , which is entire by assumption.
In the foundations of mathematics, von Neumann–Bernays–Gödel set theory (NBG) is an axiomatic set theory that is a conservative extension of Zermelo–Fraenkel–choice set theory (ZFC). NBG introduces the notion of class, which is a collection of sets defined by a formula whose quantifiers range only over sets.