Ad
related to: haversine distance between two points
Search results
Results from the WOW.Com Content Network
The haversine formula determines the great-circle distance between two points on a sphere given their longitudes and latitudes.Important in navigation, it is a special case of a more general formula in spherical trigonometry, the law of haversines, that relates the sides and angles of spherical triangles.
A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...
Computes the great circle distance between two points, specified by the latitude and longitude, using the haversine formula. Template parameters [Edit template data] Parameter Description Type Status Latitude 1 lat1 1 Latitude of point 1 in decimal degrees Default 0 Number required Longitude 1 long1 2 Longitude of point 1 in decimal degrees Default 0 Number required Latitude 2 lat2 3 Latitude ...
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
The slant distance s (chord length) between two points can be reduced to the arc length on the ellipsoid surface S as: [21] = (+) / / where R is evaluated from Earth's azimuthal radius of curvature and h are ellipsoidal heights are each point. The first term on the right-hand side of the equation accounts for the mean elevation and the second ...
For example, to find the midpoint of the path, substitute σ = 1 ⁄ 2 (σ 01 + σ 02); alternatively to find the point a distance d from the starting point, take σ = σ 01 + d/R. Likewise, the vertex, the point on the great circle with greatest latitude, is found by substituting σ = + 1 ⁄ 2 π. It may be convenient to parameterize the ...
The shorter of the two great-circle arcs between two distinct points on the sphere is called the minor arc, and is the shortest surface-path between them. Its arc length is the great-circle distance between the points (the intrinsic distance on a sphere), and is proportional to the measure of the central angle formed by the two points and the ...
The distance from a point to a plane in three-dimensional Euclidean space [7] The distance between two lines in three-dimensional Euclidean space [8] The distance from a point to a curve can be used to define its parallel curve, another curve all of whose points have the same distance to the given curve. [9]
Ad
related to: haversine distance between two points