Search results
Results from the WOW.Com Content Network
The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...
The Miller–Rabin and the Solovay–Strassen primality tests are simple and are much faster than other general primality tests. One method of improving efficiency further in some cases is the Frobenius pseudoprimality test ; a round of this test takes about three times as long as a round of Miller–Rabin, but achieves a probability bound ...
For example, the popular Miller–Rabin primality test can be formulated as a P/poly algorithm: the "advice" is a list of candidate values to test. It is possible to precompute a list of O ( n ) {\displaystyle O(n)} values such that every composite n -bit number will be certain to have a witness a in the list. [ 3 ]
A strong pseudoprime is a composite number that passes the Miller–Rabin primality test. All prime numbers pass this test, but a small fraction of composites also pass, making them " pseudoprimes ". Unlike the Fermat pseudoprimes , for which there exist numbers that are pseudoprimes to all coprime bases (the Carmichael numbers ), there are no ...
This is unfortunately false for weak probable primes, because there exist Carmichael numbers; but it is true for more refined notions of probable primality, such as strong probable primes (P = 1/4, Miller–Rabin algorithm), or Euler probable primes (P = 1/2, Solovay–Strassen algorithm).
The Miller–Rabin primality test uses the following extension of Fermat's little theorem: [14] If p is an odd prime and p − 1 = 2 s d with s > 0 and d odd > 0, then for every a coprime to p, either a d ≡ 1 (mod p) or there exists r such that 0 ≤ r < s and a 2 r d ≡ −1 (mod p).
Using fast algorithms for modular exponentiation and multiprecision multiplication, the running time of this algorithm is O(k log 2 n log log n) = Õ(k log 2 n), where k is the number of times we test a random a, and n is the value we want to test for primality; see Miller–Rabin primality test for details.
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.