enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Miller–Rabin primality test - Wikipedia

    en.wikipedia.org/wiki/MillerRabin_primality_test

    The MillerRabin primality test or RabinMiller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...

  3. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    The MillerRabin and the Solovay–Strassen primality tests are simple and are much faster than other general primality tests. One method of improving efficiency further in some cases is the Frobenius pseudoprimality test ; a round of this test takes about three times as long as a round of MillerRabin, but achieves a probability bound ...

  4. Strong pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Strong_pseudoprime

    A strong pseudoprime is a composite number that passes the MillerRabin primality test. All prime numbers pass this test, but a small fraction of composites also pass, making them " pseudoprimes ". Unlike the Fermat pseudoprimes , for which there exist numbers that are pseudoprimes to all coprime bases (the Carmichael numbers ), there are no ...

  5. Fermat pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Fermat_pseudoprime

    This leads to probabilistic algorithms such as the Solovay–Strassen primality test, the Baillie–PSW primality test, and the MillerRabin primality test, which produce what are known as industrial-grade primes. Industrial-grade primes are integers for which primality has not been "certified" (i.e. rigorously proven), but have undergone a ...

  6. Generation of primes - Wikipedia

    en.wikipedia.org/wiki/Generation_of_primes

    A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.

  7. Talk:Primality test - Wikipedia

    en.wikipedia.org/wiki/Talk:Primality_test

    An algorithm is approximative if it produces the correct answer only for (an overwhelming) majority of inputs. You can have a deterministic approximative test for primality (e.g., base-2 Fermat test), and you can have a probabilistic exact test (e.g., Rabin-Miller).

  8. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    The MillerRabin primality test uses the following extension of Fermat's little theorem: [14] If p is an odd prime and p − 1 = 2 s d with s > 0 and d odd > 0, then for every a coprime to p, either a d ≡ 1 (mod p) or there exists r such that 0 ≤ r < s and a 2 r d ≡ −1 (mod p).

  9. Solovay–Strassen primality test - Wikipedia

    en.wikipedia.org/wiki/Solovay–Strassen...

    Hence, the probability of failure is at most 2 −k (compare this with the probability of failure for the MillerRabin primality test, which is at most 4 −k). For purposes of cryptography the more bases a we test, i.e. if we pick a sufficiently large value of k, the better the accuracy of test.