Search results
Results from the WOW.Com Content Network
The linear programming problem is to find a point on the polyhedron that is on the plane with the highest possible value. Linear programming ( LP ), also called linear optimization , is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear ...
In the theory of linear programming, a basic feasible solution (BFS) is a solution with a minimal set of non-zero variables. Geometrically, each BFS corresponds to a vertex of the polyhedron of feasible solutions. If there exists an optimal solution, then there exists an optimal BFS.
In linear programming, a discipline within applied mathematics, a basic solution is any solution of a linear programming problem satisfying certain specified technical conditions. For a polyhedron P {\displaystyle P} and a vector x ∗ ∈ R n {\displaystyle \mathbf {x} ^{*}\in \mathbb {R} ^{n}} , x ∗ {\displaystyle \mathbf {x} ^{*}} is a ...
Such a formulation is called an optimization problem or a mathematical programming problem (a term not directly related to computer programming, but still in use for example in linear programming – see History below). Many real-world and theoretical problems may be modeled in this general framework. Since the following is valid:
Given a transformation between input and output values, described by a mathematical function, optimization deals with generating and selecting the best solution from some set of available alternatives, by systematically choosing input values from within an allowed set, computing the output of the function and recording the best output values found during the process.
Mathematical economics is the application of mathematical methods to represent theories and analyze problems in economics.Often, these applied methods are beyond simple geometry, and may include differential and integral calculus, difference and differential equations, matrix algebra, mathematical programming, or other computational methods.
Leonid Vitalyevich Kantorovich (Russian: Леонид Витальевич Канторович, IPA: [lʲɪɐˈnʲit vʲɪˈtalʲjɪvʲɪtɕ kəntɐˈrovʲɪtɕ] ⓘ; 19 January 1912 – 7 April 1986) was a Soviet mathematician and economist, known for his theory and development of techniques for the optimal allocation of resources.
Linear programming relaxation is a standard technique for designing approximation algorithms for hard optimization problems. In this application, an important concept is the integrality gap, the maximum ratio between the solution quality of the integer program and of its relaxation.