enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. Early stopping - Wikipedia

    en.wikipedia.org/wiki/Early_stopping

    In machine learning, early stopping is a form of regularization used to avoid overfitting when training a model with an iterative method, such as gradient descent. Such methods update the model to make it better fit the training data with each iteration.

  4. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    Overfitting occurs when the learned function becomes sensitive to the noise in the sample. As a result, the function will perform well on the training set but not perform well on other data from the joint probability distribution of x {\displaystyle x} and y {\displaystyle y} .

  5. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    Bootstrap aggregating, also called bagging (from bootstrap aggregating) or bootstrapping, is a machine learning (ML) ensemble meta-algorithm designed to improve the stability and accuracy of ML classification and regression algorithms.

  6. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    This provides a theoretical framework with which to analyze SVM algorithms and compare them to other algorithms with the same goals: to generalize without overfitting. SVM was first proposed in 1995 by Corinna Cortes and Vladimir Vapnik , and framed geometrically as a method for finding hyperplanes that can separate multidimensional data into ...

  7. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    Overfitting is especially likely in cases where learning was performed too long or where training examples are rare, causing the learner to adjust to very specific random features of the training data that have no causal relation to the target function. In this process of overfitting, the performance on the training examples still increases ...

  8. Deep image prior - Wikipedia

    en.wikipedia.org/wiki/Deep_Image_Prior

    A reference implementation rewritten in Python 3.6 with the PyTorch 0.4.0 library was released by the author under the Apache 2.0 license: deep-image-prior [3] A TensorFlow-based implementation written in Python 2 and released under the CC-SA 3.0 license: deep-image-prior-tensorflow

  9. Vanishing gradient problem - Wikipedia

    en.wikipedia.org/wiki/Vanishing_gradient_problem

    Backpropagation allowed researchers to train supervised deep artificial neural networks from scratch, initially with little success. Hochreiter's diplom thesis of 1991 formally identified the reason for this failure in the "vanishing gradient problem", [2] [3] which not only affects many-layered feedforward networks, [4] but also recurrent ...