Search results
Results from the WOW.Com Content Network
Nick translation is a biological process in which a single-stranded DNA nick serves as the marker for DNA polymerase to excise and replace possibly damaged nucleotides. [3] At the end of the segment that DNA polymerase acts on, DNA ligase must repair the final segment of DNA backbone in order to complete the repair process. [ 4 ]
A nicking enzyme (or nicking endonuclease) is an enzyme that cuts only one strand of a double-stranded DNA or RNA molecule [1] at a specific recognition nucleotide sequence known as the restriction site. Such enzymes hydrolyze (cut) only one strand of the DNA duplex, to produce DNA molecules that are “nicked”, rather than cleaved. [2] [3]
Nick translation [1] (or head translation), developed in 1977 by Peter Rigby and Paul Berg, is a tagging technique in molecular biology in which DNA polymerase I is used to replace some of the nucleotides of a DNA sequence with their labeled analogues, creating a tagged DNA sequence which can be used as a probe in fluorescent in situ hybridization (FISH) or blotting techniques.
The initiator protein remains bound to the 5' phosphate end of the nicked strand, and the free 3' hydroxyl end is released to serve as a primer for DNA synthesis by DNA polymerase III. Using the unnicked strand as a template, replication proceeds around the circular DNA molecule, displacing the nicked strand as single-stranded DNA.
These minor bands may be nicked DNA (open circular form) and the relaxed closed circular form which normally run slower than supercoiled DNA, and the single-stranded form (which can sometimes appear depending on the preparation methods) may move ahead of the supercoiled DNA.
The high-profile disappearance of 6-year-old Morgan Nick may have been solved after nearly 30 years – with DNA pointing to a now-dead child predator who was eyed early in the investigation, cops ...
Known relaxases are metal ion dependent tyrosine transesterases. This means that they use a metal ion to aid the transfer of an ester bond from the DNA phosphodiester backbone to a catalytic tyrosine side chain, resulting in a long-lived covalent phosphotyrosine intermediate that essentially unified the nicked DNA strand and the enzyme as one molecule.
Authorities were vague when asked whether the same DNA testing could have been done years ago and identified the suspect earlier. In 2001, authorities arrested another man in the killings.