enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    An example of steady state conduction is the heat flow through walls of a warm house on a cold day—inside the house is maintained at a high temperature and, outside, the temperature stays low, so the transfer of heat per unit time stays near a constant rate determined by the insulation in the wall and the spatial distribution of temperature ...

  3. Convection (heat transfer) - Wikipedia

    en.wikipedia.org/wiki/Convection_(Heat_transfer)

    where ˙ is the heat transferred per unit time, A is the area of the object, h is the heat transfer coefficient, T is the object's surface temperature, and T f is the fluid temperature. [8] The convective heat transfer coefficient is dependent upon the physical properties of the fluid and the physical situation.

  4. Laminar flow - Wikipedia

    en.wikipedia.org/wiki/Laminar_flow

    An everyday example is the slow, smooth and optically transparent flow of shallow water over a smooth barrier. [ 8 ] When water leaves a tap without an aerator with little force, it first exhibits laminar flow, but as acceleration by the force of gravity immediately sets in, the Reynolds number of the flow increases with speed, and the laminar ...

  5. Convection - Wikipedia

    en.wikipedia.org/wiki/Convection

    As the temperature difference between the top and bottom of the fluid becomes higher, significant differences in fluid parameters other than density may develop in the fluid due to temperature. An example of such a parameter is viscosity, which may begin to significantly vary horizontally across layers of fluid. This breaks the symmetry of the ...

  6. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    The macroscopic energy equation for infinitesimal volume used in heat transfer analysis is [6] = +, ˙, where q is heat flux vector, −ρc p (∂T/∂t) is temporal change of internal energy (ρ is density, c p is specific heat capacity at constant pressure, T is temperature and t is time), and ˙ is the energy conversion to and from thermal ...

  7. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The second law of thermodynamics is a physical law based on universal empirical observation concerning heat and energy interconversions.A simple statement of the law is that heat always flows spontaneously from hotter to colder regions of matter (or 'downhill' in terms of the temperature gradient).

  8. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout.

  9. Leidenfrost effect - Wikipedia

    en.wikipedia.org/wiki/Leidenfrost_effect

    Leidenfrost droplet Demonstration of the Leidenfrost effect Leidenfrost effect of a single drop of water. The Leidenfrost effect is a physical phenomenon in which a liquid, close to a solid surface of another body that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly.