Search results
Results from the WOW.Com Content Network
Water boiling at 99.3 °C (210.8 °F) at 215 m (705 ft) elevation. The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid [1] [2] and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding environmental pressure.
The boiling point of water is typically considered to be 100 °C (212 °F; 373 K), especially at sea level. Pressure and a change in the composition of the liquid may alter the boiling point of the liquid. High elevation cooking generally takes longer since boiling point is a function of atmospheric pressure.
Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: ... Water: 100.00 0.512 0.00 –1.86 ... Boiling-point elevation; References
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
Boiling-point elevation is the phenomenon whereby the boiling point of a liquid ... Examples: i = 1 for sugar in water; i = 1.9 for sodium chloride in water, ...
However, even below the boiling point, water can change to vapor at its surface by evaporation (vaporization throughout the liquid is known as boiling). Sublimation and deposition also occur on surfaces. [52] For example, frost is deposited on cold surfaces while snowflakes form by deposition on an aerosol particle or ice nucleus. [61]
The temperature and pressure at which ordinary solid, liquid, and gaseous water coexist in equilibrium is a triple point of water. Since 1954, this point had been used to define the base unit of temperature, the kelvin, [45] [46] but, starting in 2019, the kelvin is now defined using the Boltzmann constant, rather than the triple point of water ...
If the system is divided by a wall that is permeable to heat or to matter, the temperature of each subsystem is identical. Additionally, the boiling temperature of a substance is an intensive property. For example, the boiling temperature of water is 100 °C at a pressure of one atmosphere, regardless of the quantity of water remaining as liquid.