Search results
Results from the WOW.Com Content Network
Liquid oxygen has a clear cyan color and is strongly paramagnetic: it can be suspended between the poles of a powerful horseshoe magnet. [2] Liquid oxygen has a density of 1.141 kg/L (1.141 g/ml), slightly denser than liquid water, and is cryogenic with a freezing point of 54.36 K (−218.79 °C; −361.82 °F) and a boiling point of 90.19 K (−182.96 °C; −297.33 °F) at 1 bar (14.5 psi).
One of the earliest known references to lodestone's magnetic properties was made by 6th century BC Greek philosopher Thales of Miletus, [12] whom the ancient Greeks credited with discovering lodestone's attraction to iron and other lodestones. [13] The name magnet may come from lodestones found in Magnesia, Anatolia. [14]
For these materials one contribution to the magnetic response comes from the interaction between the electron spins and the magnetic field known as Pauli paramagnetism. For a small magnetic field H {\displaystyle \mathbf {H} } , the additional energy per electron from the interaction between an electron spin and the magnetic field is given by:
Magnetite reacts with oxygen to produce hematite, and the mineral pair forms a buffer that can control how oxidizing its environment is (the oxygen fugacity). This buffer is known as the hematite-magnetite or HM buffer. At lower oxygen levels, magnetite can form a buffer with quartz and fayalite known as the QFM buffer.
A magnet's magnetic moment (also called magnetic dipole moment and usually denoted μ) is a vector that characterizes the magnet's overall magnetic properties. For a bar magnet, the direction of the magnetic moment points from the magnet's south pole to its north pole, [ 15 ] and the magnitude relates to how strong and how far apart these poles ...
Neodymium magnets (an alloy, Nd 2 Fe 14 B) are the strongest permanent magnets known. A neodymium magnet of a few tens of grams can lift a thousand times its own weight, and can snap together with enough force to break bones. These magnets are cheaper, lighter, and stronger than samarium–cobalt magnets.
The liquid outer core moves in the presence of the magnetic field and eddies are set up into the same due to the Coriolis effect. [18] These eddies develop a magnetic field which boosts Earth's original magnetic field—a process which is self-sustaining and is called the geomagnetic dynamo. [19] Reversals of Earth's magnetic field
Liquid hydrogen is not the only way cryogenically to cool a magnet, indeed conventionally superconductors are cooled using liquid helium at 4.2K and for conventional conductor pulsed magnets (including copper) most attention has been given to liquid nitrogen at 77 K. [15] Liquid hydrogen can be expected to drive better performance than liquid ...