Search results
Results from the WOW.Com Content Network
A drainage equation is an equation describing the relation between depth and spacing of parallel subsurface drains, depth of the watertable, depth and hydraulic conductivity of the soils. It is used in drainage design. Parameters in Hooghoudt's drainage equation. A well known steady-state drainage
In chemical analysis, matrix refers to the components of a sample other than the analyte [1] of interest. The matrix can have a considerable effect on the way the analysis is conducted and the quality of the results are obtained; such effects are called matrix effects. [2]
According to Montgomery and Dietrich’s equation, drainage density is a function of vertical hydraulic conductivity. Coarse-grained sediment like sand would have a higher hydraulic conductivity and are predicted by the equation to form a relatively higher drainage density system than a system formed by finer silt with a lower hydraulic ...
An example of these efforts was developed at the Southeast Water Laboratory, [19] one of the first attempts to calibrate a surface runoff model with field data for a variety of chemical contaminants. The attention given to surface runoff contaminant models has not matched the emphasis on pure hydrology models, in spite of their role in the ...
These equations also demonstrate the deep connection between transport phenomena and thermodynamics, a connection that explains why transport phenomena are irreversible. Almost all of these physical phenomena ultimately involve systems seeking their lowest energy state in keeping with the principle of minimum energy .
Temperature programmed desorption (TPD) is the method of observing desorbed molecules from a surface when the surface temperature is increased. When experiments are performed using well-defined surfaces of single-crystalline samples in a continuously pumped ultra-high vacuum (UHV) chamber, then this experimental technique is often also referred to as thermal desorption spectroscopy or thermal ...
This equation implies that if one makes a log–log plot of adsorption data, the data will fit a straight line. The Freundlich isotherm has two parameters, while Langmuir's equations has only one: as a result, it often fits the data on rough surfaces better than the Langmuir isotherm.
In applications, relative permeability is often represented as a function of water saturation; however, owing to capillary hysteresis one often resorts to a function or curve measured under drainage and another measured under imbibition. Under this approach, the flow of each phase is inhibited by the presence of the other phases.