Search results
Results from the WOW.Com Content Network
Figure 1. A simple bimodal distribution, in this case a mixture of two normal distributions with the same variance but different means. The figure shows the probability density function (p.d.f.), which is an equally-weighted average of the bell-shaped p.d.f.s of the two normal distributions.
The Beta distribution on [0,1], a family of two-parameter distributions with one mode, of which the uniform distribution is a special case, and which is useful in estimating success probabilities. The four-parameter Beta distribution, a straight-forward generalization of the Beta distribution to arbitrary bounded intervals [,].
The following is an example of applying a continuity correction. Suppose one wishes to calculate Pr(X ≤ 8) for a binomial random variable X. If Y has a distribution given by the normal approximation, then Pr(X ≤ 8) is approximated by Pr(Y ≤ 8.5). The addition of 0.5 is the continuity correction; the uncorrected normal approximation gives ...
The mode of a sample is the element that occurs most often in the collection. For example, the mode of the sample [1, 3, 6, 6, 6, 6, 7, 7, 12, 12, 17] is 6. Given the list of data [1, 1, 2, 4, 4] its mode is not unique. A dataset, in such a case, is said to be bimodal, while a set with more than two modes may be described as multimodal.
In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.
The reason this gives a stable distribution is that the characteristic function for the sum of two independent random variables equals the product of the two corresponding characteristic functions. Adding two random variables from a stable distribution gives something with the same values of α {\displaystyle \alpha } and β {\displaystyle ...
It enters all analysis of variance problems via its role in the F-distribution, which is the distribution of the ratio of two independent chi-squared random variables, each divided by their respective degrees of freedom. Following are some of the most common situations in which the chi-squared distribution arises from a Gaussian-distributed sample.
The split normal distribution has been used mainly in econometrics and time series. A remarkable area of application is the construction of the fan chart, a representation of the inflation forecast distribution reported by inflation targeting central banks around the globe. [7] [11]