Search results
Results from the WOW.Com Content Network
the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.
In mathematics and more specifically in topology, a homeomorphism (from Greek roots meaning "similar shape", named by Henri Poincaré), [2] [3] also called topological isomorphism, or bicontinuous function, is a bijective and continuous function between topological spaces that has a continuous inverse function.
A sphere is simply connected because every loop can be contracted (on the surface) to a point. The definition rules out only handle-shaped holes. A sphere (or, equivalently, a rubber ball with a hollow center) is simply connected, because any loop on the surface of a sphere can contract to a point even though it has a "hole" in the hollow center.
The Heine–Cantor theorem asserts that every continuous function on a compact set is uniformly continuous. In particular, if a function is continuous on a closed bounded interval of the real line, it is uniformly continuous on that interval. The Darboux integrability of continuous functions follows almost immediately from this theorem.
Definition: We say that the function (resp. set-valued function) f is closable in X × Y if there exists a subset D ⊆ X containing S and a function (resp. set-valued function) F : D → Y whose graph is equal to the closure of the set Gr f in X × Y. Such an F is called a closure of f in X × Y, is denoted by f, and necessarily extends f.
So, if the open mapping theorem holds for ; i.e., is an open mapping, then is continuous and then is continuous (as the composition of continuous maps). For example, the above argument applies if f {\displaystyle f} is a linear operator between Banach spaces with closed graph, or if f {\displaystyle f} is a map with closed graph between compact ...
The space C [a, b] of continuous real-valued functions on a closed and bounded interval is a Banach space, and so a complete metric space, with respect to the supremum norm. However, the supremum norm does not give a norm on the space C (a, b) of continuous functions on (a, b), for it may contain unbounded functions.
The Stone–Čech compactification can be constructed explicitly as follows: let C be the set of continuous functions from X to the closed interval [0, 1]. Then each point in X can be identified with an evaluation function on C. Thus X can be identified with a subset of [0, 1] C, the space of all functions from C to [0, 1].