enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/.../Convergence_of_random_variables

    Notice that for the condition to be satisfied, it is not possible that for each n the random variables X and X n are independent (and thus convergence in probability is a condition on the joint cdf's, as opposed to convergence in distribution, which is a condition on the individual cdf's), unless X is deterministic like for the weak law of ...

  3. Proofs of convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_convergence_of...

    This article is supplemental for “Convergence of random variables” and provides proofs for selected results. Several results will be established using the portmanteau lemma: A sequence {X n} converges in distribution to X if and only if any of the following conditions are met:

  4. Kolmogorov's three-series theorem - Wikipedia

    en.wikipedia.org/wiki/Kolmogorov's_three-series...

    In probability theory, Kolmogorov's Three-Series Theorem, named after Andrey Kolmogorov, gives a criterion for the almost sure convergence of an infinite series of random variables in terms of the convergence of three different series involving properties of their probability distributions.

  5. Slutsky's theorem - Wikipedia

    en.wikipedia.org/wiki/Slutsky's_theorem

    This theorem follows from the fact that if X n converges in distribution to X and Y n converges in probability to a constant c, then the joint vector (X n, Y n) converges in distribution to (X, c) . Next we apply the continuous mapping theorem , recognizing the functions g ( x , y ) = x + y , g ( x , y ) = xy , and g ( x , y ) = x y −1 are ...

  6. Continuous mapping theorem - Wikipedia

    en.wikipedia.org/wiki/Continuous_mapping_theorem

    On the right-hand side, the first term converges to zero as n → ∞ for any fixed δ, by the definition of convergence in probability of the sequence {X n}. The second term converges to zero as δ → 0, since the set B δ shrinks to an empty set. And the last term is identically equal to zero by assumption of the theorem.

  7. Buffon's needle problem - Wikipedia

    en.wikipedia.org/wiki/Buffon's_needle_problem

    We can calculate the probability P as the product of two probabilities: P = P 1 · P 2, where P 1 is the probability that the center of the needle falls close enough to a line for the needle to possibly cross it, and P 2 is the probability that the needle actually crosses the line, given that the center is within reach.

  8. Asymptotic theory (statistics) - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_theory_(statistics)

    The law states that for a sequence of independent and identically distributed (IID) random variables X 1, X 2, ..., if one value is drawn from each random variable and the average of the first n values is computed as X n, then the X n converge in probability to the population mean E[X i] as n → ∞. [2] In asymptotic theory, the standard ...

  9. Glivenko–Cantelli theorem - Wikipedia

    en.wikipedia.org/wiki/Glivenko–Cantelli_theorem

    The uniform convergence of more general empirical measures becomes an important property of the Glivenko–Cantelli classes of functions or sets. [2] The Glivenko–Cantelli classes arise in Vapnik–Chervonenkis theory, with applications to machine learning. Applications can be found in econometrics making use of M-estimators.