enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of text mining methods - Wikipedia

    en.wikipedia.org/wiki/List_of_text_mining_methods

    Different text mining methods are used based on their suitability for a data set. Text mining is the process of extracting data from unstructured text and finding patterns or relations. Below is a list of text mining methodologies. Centroid-based Clustering: Unsupervised learning method. Clusters are determined based on data points. [1]

  3. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    Spatial data mining is the application of data mining methods to spatial data. The end objective of spatial data mining is to find patterns in data with respect to geography. So far, data mining and Geographic Information Systems (GIS) have existed as two separate technologies, each with its own methods, traditions, and approaches to ...

  4. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    The difference between data analysis and data mining is that data analysis is used to test models and hypotheses on the dataset, e.g., analyzing the effectiveness of a marketing campaign, regardless of the amount of data. In contrast, data mining uses machine learning and statistical models to uncover clandestine or hidden patterns in a large ...

  5. Affinity analysis - Wikipedia

    en.wikipedia.org/wiki/Affinity_analysis

    This data mining method has been explored in different fields including disease diagnosis, market basket analysis, retail industry, higher education, and financial analysis. In retail, affinity analysis is used to perform market basket analysis, in which retailers seek to understand the purchase behavior of customers.

  6. Link analysis - Wikipedia

    en.wikipedia.org/wiki/Link_analysis

    Most knowledge discovery methods follow these steps (at the highest level): [2] Data processing; Transformation; Analysis; Visualization; Data gathering and processing requires access to data and has several inherent issues, including information overload and data errors. Once data is collected, it will need to be transformed into a format that ...

  7. Anchor modeling - Wikipedia

    en.wikipedia.org/wiki/Anchor_Modeling

    Due to storing identities and values together, knots cannot be historized. Their usefulness comes from being able to reduce storage requirements and improve performance, since tables referencing knots can store a short value rather than a long string. An example of a knot for genders is a set of 2-tuples: { #1, 'Male' , #2, 'Female' }

  8. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Educational data mining Cluster analysis is for example used to identify groups of schools or students with similar properties. Typologies From poll data, projects such as those undertaken by the Pew Research Center use cluster analysis to discern typologies of opinions, habits, and demographics that may be useful in politics and marketing.

  9. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...